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Olive, representing one of the most important fruit crops of the Mediterranean area, is 
characterized by a general low fruit yield, due to numerous constraints, including alternate 
bearing, low flower viability, male-sterility, inter-incompatibility, and self-incompatibility (SI). 
Early efforts to clarify the genetic control of SI in olive gave conflicting results, and only 
recently, the genetic control of SI has been disclosed, revealing that olive possesses an 
unconventional homomorphic sporophytic diallelic system of SI, dissimilar from other 
described plants. This system, characterized by the presence of two SI groups, prevents 
self-fertilization and regulates inter-compatibility between cultivars, such that cultivars bearing 
the same incompatibility group are incompatible. Despite the presence of a functional SI, 
some varieties, in particular conditions, are able to set seeds following  
self-fertilization, a mechanism known as pseudo-self-compatibility (PSC), as widely reported 
in previous literature. Here, we summarize the results of previous works on SI in olive, 
particularly focusing on the occurrence of self-fertility, and offer a new perspective in view 
of the recent elucidation of the genetic architecture of the SI system in olive. Recent advances 
in research aimed at unraveling the molecular bases of SI and its breakdown in olive are 
also presented. The clarification of these mechanisms may have a huge impact on orchard 
management and will provide fundamental information for the future of olive breeding programs.

Keywords: Olea europaea L., pseudo-self-compatibility, pollen-pistil interaction, sporophytic system,  
self-incompatibility

INTRODUCTION

Olive (Olea europaea L.) is a perennial diploid species mainly clonally propagated and 
diffused in the Mediterranean area as one of the oldest tree crops (Loumou and Giourga, 
2003; McKey et  al., 2010; Zohary et  al., 2012; Mousavi et  al., 2017). As in many other 
allochthonous, hermaphrodite, wind-pollinated species, olive is characterized by a plentiful 
flowering, followed by a poor fruit set, which results in low yields (Cuevas and Polito, 
2004; Ben Dhiab et  al., 2017; Kassa et  al., 2019). Environmental conditions, such as 
temperature, rainfall, and wind, may strongly affect flowering time, flowering intensity, and 
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fertilization (Fernandez-Escobar et al., 2008; Haberman et al., 
2017; Benlloch-González et  al., 2018). Efficient pollination 
depends on many factors, such as the presence of exogenous 
compatible pollen, the duration of stigma receptivity, the 
number of pollen grains, pollen-ovule ratio, and stigma 
morphology (Cruden, 2000; García-Mozo et  al., 2004; Pinillos 
and Cuevas, 2009; Rojo et  al., 2016). Despite the importance 
of these factors, the main constraints responsible for the low 
fruit setting of olive are undoubtedly self-incompatibility (SI) 
and a high percentage of ovary abortion of some cultivars 
(Reale et  al., 2009; Seifi et  al., 2015).

Self-incompatibility is one of the most effective systems 
adopted by flowering plants to prevent inbreeding and maintain 
a high diversity within species (Ferrer and Good, 2012). Within 
the sporophytic (SSI) and gametophytic (GSI) categories, several 
incompatibility systems have been reported, but only three of 
them have been characterized at molecular level, one for SSI 
(Brassicaceae) and two for GSI (one in Solanaceae, Plantaginaceae, 
and Rosaceae, and one for Papaveraceae) (Higashiyama, 2010). 
The recent discovery of the diallelic SSI system in olive and 
other related genera has provided evidence on the SI system 
operating in the Oleaceae family. In particular, it has been 
clarified that the inhibition of pollen tube growth takes place 
at the stigma, and it has been established that there are only 
two incompatibility groups, i.e., diallelic SI, such that olive 
cultivars are incompatible within groups and compatible between 
groups (Saumitou-Laprade et  al., 2017a).

In light of this evidence, it has become even more difficult 
to explain the self-fertility of some varieties, which has been 
confirmed by numerous studies (Seifi et  al., 2012; Selak et  al., 
2014a; Breton et  al., 2016; Marchese et  al., 2016a). It is also now 
clear that pseudo-self-compatibility (PSC)—the failure to reject 
self-pollen despite the presence of a functional SI system—may 
occur in olive, and all previous reports on olive self-fertility need 
to be  re-interpreted or ignored when not confirmed by paternity 
tests of seeds deriving from selfing. In this review, we  hope to 
shed some light on the complexity of SI system in olive, particularly 
focusing on the evidence for PSC, providing a synthesis of the 
fragmented work on this topic and a new perspective on SI in 
olive, supported by experimental work from our laboratory.

OLIVE SELF-INCOMPATIBILITY

For a long time, olive has been erroneously classified as a 
GSI species, based on morphological traits shared with taxa 
manifesting a GSI system, such as wet-type stigma and 
bi-nucleate pollen (Serrano et  al., 2008); however, only a few 
cytological studies supported the occurrence of this kind of 
SI system (Serrano et  al., 2010). Recently, it has been 
demonstrated that the GSI model fails to explain the presence 
of reciprocal differences in fruit set in one-third of mates 
(Breton et  al., 2014; Farinelli et  al., 2018). This evidence, 
together with others, such as the inhibition of germination 
at the stigma and the failure to identify genes controlling 
GSI in olive (Collani et  al., 2012), led to the hypothesis that 
olive may have a SSI system. The wide methodical genetic 

study carried out by Saumitou-Laprade et  al. (2017a,b) 
definitively confirmed that olive has a sporophytic homomorphic 
diallelic system, similar to that identified in close species, 
such as Phillyrea angustifolia and Fraxinus ornus (Saumitou-
Laprade et  al., 2010; Vernet et  al., 2016) and different from 
any other described in other plant families. The SSI system 
has been classified as diallelic because controlled by a single 
locus with only two alleles (S1 and S2), according to the 
segregation analysis of SI trait in a cross population (Saumitou-
Laprade et  al., 2017a). Thus, only two SI genotypes have been 
found so far, and olive cultivars can be  classified, based on 
their belonging to the SI group, as G1  =  S1S2 or G2  =  S1S1. 
First evidence on the olive diallelic SSI system indicated that 
it is not accompanied by heterostyly (Saumitou-Laprade et  al., 
2017a); however, dedicated studies to confirm this preliminary 
data were not conducted.

The general behavior of pollen within pistil tissues, under 
self- or incompatible cross-pollination, is represented in Figure 1. 
After self-pollination (Figure 1, panels A–G), most of the pollen 
grains landing on the stigmatic surface do not germinate, and 
others start germinating but do not penetrate nor grow into 
the transmitting tissue of the style, indicating that inhibition 
of pollen tube growth takes place at stigmatic level, according 
to the sporophytic nature of the olive SI. By contrast, during 
cross-pollination with compatible pollen (Figure 1, panels H–J), 
while a high number of pollen grains germinate on the stigma 
and grow toward the style, a few of them are also able to 
penetrate the transmitting tissue of the style and reach the 
ovule. Generally, only one pollen tube (and rarely two or three) 
grow toward the ovary and reach the carpels to penetrate an 
ovule (Ateyyeh et  al., 2000; Seifi et  al., 2011).

It has also been observed that the SI group or the genotype 
of the pollen recipient may have a significant effect on the 
length that pollen tubes may reach in the stigma prior to 
being arrested due to the SI reaction. In general, in G1 plants, 
pollen grains do not germinate at all or tube growth stops 
shortly after germination, whereas a higher variability can 
be observed in G2 plants, characterized by short or long pollen 
tube growth (Saumitou-Laprade et  al., 2017a). This behavior, 
which probably contributed to the earlier difficulties in the 
classification of olive as GSI or SSI species, might be explained 
with a different timing of the SI response after the recognition 
of self-pollen.

OLIVE PSEUDO-SELF-COMPATIBILITY

The current knowledge on olive SI system indicates that all 
olive cultivars are self-incompatible (Saumitou-Laprade et al., 
2017a); however, some of them can behave as PSC in particular 
conditions (probably due to both genetic and environmental 
factors), being able to overcome SI and produce seeds after 
self-pollination (Breton et  al., 2016; Marchese et  al., 2016a; 
Saumitou-Laprade et al., 2017a). For a long time, olive cultivars 
were classified into self-compatible and self-incompatible 
cultivars, with most of them considered as self-incompatible 
(Wu et  al., 2002; Mookerjee et  al., 2005; Seifi et  al., 2011; 
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Sánchez-Estrada and Cuevas, 2018). Self-compatibility tests 
carried out in several studies have shown a low but certain 
rate of self-fertilizing cultivars, that were, consequently, 
considered to be  partially self-compatible (Androulakis and 
Loupassaki, 1990; Ateyyeh et al., 2000; Moutier, 2002; Kasasbeh 
et  al., 2005; Selak et  al., 2011; Taslimpour and Aslmoshtaghi, 
2013; Breton et  al., 2014; Koubouris et  al., 2014; Farinelli 
et  al., 2018). Unfortunately, due to the lack of molecular 
tests to assess the origin of putatively selfed seeds and the 
use of unreliable materials and protocols for cross- and self-
pollination experiments, some varieties were erroneously 
considered as self-compatible and were later proved totally 
self-incompatible. As an example, cv. Arbequina, previously 
classified as self-compatible (Cuevas, 2005), was then shown 
as self-incompatible (Díaz et al., 2006; Marchese et al., 2016b). 
Similarly, as a probable consequence of the multiple factors 
affecting self-fertilization success, some varieties were 
considered self-incompatible, as cv. Koroneiki (Mookerjee 
et al., 2005; Seifi et al., 2011), that later on definitively showed 
a low but reliable self-fertilization rate (Marchese et  al., 
2016b). Differences were also found among clones of the 
same cultivar, as in the case of cv. Leccino, mostly resulting 

in self-incompatible (de la Rosa et  al., 2003), but with some 
clones partially self-compatible (Solfanelli et  al., 2006).

Based on the recent evidence about the SI system operating 
in olive, the cultivars considered representative of the 
Mediterranean cultivated olive diversity showed a clear self-
incompatibility reaction and inhibition of self-pollen growth 
(Saumitou-Laprade et  al., 2017a). These results definitively 
support that the genetic architecture of olive SI excludes, in 
theory, any form of self-fertilization. The contrasting evidence 
that some cultivars may produce selfed progeny hints that a 
mechanism of incompatibility breakdown exists and that this 
mechanism is presently still unknown. In view of these findings, 
we  can now conclude that olive shows PSC. This behavior 
can explain the contradictory data on the self-compatibility 
tests, and it is in agreement with previous literature reporting 
that the percent of successful self-fertilization was significantly 
lower than the fertilization rate under open- or cross-pollination 
(Griggs et  al., 1975; Ateyyeh et  al., 2000; Kasasbeh et  al., 
2005; Mookerjee et  al., 2005). The production of truly self-
seedlings has been confirmed by numerous studies where 
paternity tests have been applied (de la Rosa et  al., 2004; 
Mookerjee et  al., 2005; Marchese et  al., 2016b).
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FIGURE 1 | Self-incompatibility, cross-compatibility, and pseudo-self-compatibility in olive. (A–G) Self-incompatibility reaction in flowers of cultivars Frantoio, 
Leccino, and Dolce Agogia at 6 and 15 days after anthesis, as observed by epifluorescence images after aniline blue staining (A–C) and scanning electron 
microscope (SEM) images (D–G). Pistils of cv. Frantoio (A,B) and transversal sections of style of cv. Leccino (C) and cv. Dolce Agogia (E) showing the absence of 
pollen tube growth in the style. Stigma of cv. Frantoio (D,G) and cv. Leccino (F) showing the absence of germinated pollen grains into the style. Bars = 150 μm (A,B), 
100 μm (D), 50 μm (C,E), and 20 μm (F,G). (H–J) Cross-compatibility of cv. Frantoio (incompatibility group G1), pollinated with compatible G2 pollen, as observed by 
epifluorescence images after aniline blue staining (H,I) and SEM image (J). Cross-pollination at 72 h after anthesis showing pollen-pistil compatibility (H). Transversal 
section of style showing pollen tube growth throughout the pistil (I). Stigma showing germinated pollen grains (J). Bars = 150 μm (H), 50 μm (I), and 10 μm (J). 
(K–P): Pseudo-self-compatibility in self-pollinated flowers, as observed by epifluorescence images after aniline blue staining (K–O) and SEM image (P). Flowers were 
collected at 6 (M–P) and 15 (K,L) days after anthesis. Pistils showing pollen tube growth in the style (K–M,O). Transversal sections of style showing pollen tube 
growth through the stylar tissues (N,P). Bars = 150 μm (K–M), 50 μm (N–O), and 6 μm (P).
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PSC pollen growth reaction seems completely different from 
the compatibility response observed under pollination with 
compatible pollen. In self-pollinated pistils of cv. Frantoio, in 
fact, in most cases, pollen grains do not germinate at all, even 
after 6 and 15  days after flower opening and pollen-stigma 
contact (Figure 1, panels K and L), but in few cases, one or 
few pollen tubes may grow into the style and likely reach the 
ovary (Figure 1, panels M–P).

FACTORS AFFECTING THE  
PSEUDO-SELF-COMPATIBILITY

Pseudo-self-compatibility has been observed in numerous self-
incompatible species in Asteraceae, Brassicaceae, Fabaceae, 
Poaceae, Ranunculaceae, Solanaceae, and other families (Good-
Avila et  al., 2008; Crawford et  al., 2015; Liao et  al., 2016). In 
these species, numerous external and internal factors seem to 
affect the ability of plants to overcome SI barrier, including 
the pollen germination speed, the relative growth rate of self-
pollen tubes compared to cross-pollen grains, and the flower 
aging (Levin, 1996; Stephenson et  al., 2000; Good-Avila et  al., 
2008; Horisaki and Niikura, 2008). The factors affecting the 
overcome of olive SI system are not yet known, but the available 
data indicate that both genotypic and environmental factors 
can play a role in this process. By contrast, flower age does 
not seem to affect PSC, considering that it has been observed 
in stigmas of all developmental stages.

Environmental Factors
It is well established that environmental conditions may affect 
self-fertility of self-incompatible plants. In particular, SI can 
be overcome by high temperatures (Okazaki and Hinata, 1987; 
Wilkins and Thorogood, 1992; Horisaki and Niikura, 2008), 
high humidity (Ockendon, 1978), and chemical treatments (Lao 
et  al., 2014; Yang et  al., 2018). Also, different environments 
and artificial pollination techniques may favor self-fertility  
(Do Canto et  al., 2016).

In accordance with these studies, it has been reported 
that environmental conditions may affect the SI reaction and 
fruit set in olive, and, among them, temperature appears to 
play a key role (Orlandi et  al., 2010; Selak et  al., 2013; 
Haberman et  al., 2017). It is thought, in fact, that SI in olive 
is temperature-dependent (Suárez et  al., 2012), and generally, 
high temperatures during flowering may reduce self-fertilization 
rate (Ayerza and Coates, 2004; Selak et  al., 2013). However, 
the effect of temperature seems strongly genotype-dependent 
(Griggs et al., 1975; Koubouris et al., 2009; Selak et al., 2013). 
Furthermore, temperature variations strongly influence the 
ability of olive pollen to grow and germinate (Koubouris 
et  al., 2009), as well as it influences stigma receptivity and 
ovule longevity (Selak et  al., 2014b), thus affecting the fruit 
set (Cuevas et  al., 1994).

According to the role of environmental factors in the PSC 
expression, results from studies on self-fertilization of olive 
cultivars varied particularly among different environmental 
conditions. For instance, variability in the self-fertilization 

rate has been observed among different experimental years 
(Griggs et  al., 1975; Cuevas et  al., 2001; Lavee et  al., 2002; 
Solfanelli et  al., 2006; Selak et  al., 2011), orchard location 
(Selak et al., 2011), or different conditions, as those determined 
by the use of polyethylene cages (Selak et al., 2013). However, 
considering the high number of environmental factors changing 
among location and years, the available data do not allow 
to identify, with the exception of temperature, other key 
environmental factors affecting self-fertility.

Genotype-Dependent Factors
In addition to the environmental effects, PSC appears to 
be  strongly influenced by olive genotype, considering that self-
fertilization has been exclusively observed in specific olive 
varieties and never reported in others. For example, successful 
self-fertilization in cv. Frantoio has been reported in numerous 
studies (Kasasbeh et  al., 2005; Farinelli et  al., 2008; Spinardi 
and Bassi, 2012; Breton et  al., 2014), despite a functional SI 
system is also present in this variety.

Our histological and molecular study confirmed the ability 
of cv. Frantoio to overcome SI. By contrast, PSC was not 
observed for other varieties, such as cvs. Leccino and Dolce 
Agogia (Figure 2A), in agreement with other authors (Spinardi 
and Bassi, 2012; Farinelli et  al., 2018). According to these 
data, paternity tests with microsatellite markers performed on 
seeds of cv. Koroneiki, Manzanilla, Cacereña, and Manzanilla 
de Sevilla obtained by self-pollination (Figure 2B), confirmed 
the origin of zygotic embryos by effective self-fertilization 
(Saumitou-Laprade et  al., 2017a). These results validated the 
ability of some olive cultivars to overcome the SI barrier and 
confirm the occurrence of PSC.

Similar to olive, a significant difference in PSC among 
genotypes has been reported in other plants (Foster and 
Wright, 1970; Elgersma et  al., 1989; Brennan et  al., 2005; 
Baldwin and Schoen, 2017). According to the quantitative 
nature of PSC, this trait is typically polygenic (Do Canto 
et  al., 2016). In some Brassicaceae species, variation in PSC 
has been shown to be  caused by genetic variation in genes 
unlinked to the S-locus but involved in the SI signaling cascade 
that mediates the rejection of self-pollen (Liu et  al., 2007; 
Baldwin and Schoen, 2017). This pattern has also been confirmed 
in either GSI or SSI species (Good-Avila and Stephenson, 
2002; Mable et  al., 2005; Mena-Ali and Stephenson, 2007; 
Crawford et  al., 2015; Liao et  al., 2016).

The hypothesized architecture of the S-locus in olive 
(G1  =  S1S2 and G2  =  S1S1), which guarantees a perfect 1:1 
balance between the two groups (Saumitou-Laprade et  al., 
2017a), implies that only out-crossing between the two groups 
could preserve these two unique combinations, while the 
selfing of the heterozygous group would result in the appearance 
of the homozygous combination S2S2, which would lead to 
the imbalance of the populations in favor of one group with 
respect to the other. Furthermore, first evidence demonstrates 
that cross-pollination between self-fertile varieties and 
genotypes belonging to the same SI group never occurs 
(Saumitou-Laprade et  al., 2017a). This complex picture of 
the paradoxical occurrence of PSC in olive is difficult to 
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explain, also assuming the presence of a “leaky S-allele,” as 
observed in other plant species (Baldwin and Schoen, 2017).

TOWARD THE IDENTIFICATION OF 
MOLECULAR DETERMINANTS OF  
SELF-INCOMPATIBILITY AND  
PSEUDO-SELF-COMPATIBILITY

Further studies should be  carried out, either at microscopic, 
genomic, and genetic levels, in order to understand the 
mechanisms underpinning the PSC in olive, although, it is 
also crucial to increase the knowledge of the molecular events 
occurring during the SI reaction which remain still unexplored. 
Studies aimed at identifying female and male determinants of 
the olive SI system, based on gene similarity to other plant 
species in which SI was molecularly characterized, have been 
conducted, but results of these studies indicated that olive 
flowers do not possess or express genes similar to the GSI 
determinants identified in other plants (Collani, 2012; Collani 
et  al., 2012). On the contrary, candidate genes for female 
(OeSRK-like and OeSLG-like) and male (OeSCR-like) 
determinants, as orthologous of the genes that control the SSI 
system in the Brassicaceae family, have been cloned and 
characterized in olive varieties (Collani, 2012; Collani et  al., 
2012), and gene expression studies showed that the OeSRK-like 
gene is preferentially expressed in pistils at early flowering 
stages of cv. Leccino and lowly expressed in pistils at later 
flowering stages of cv. Frantoio, while OeSCR-like was found 
specifically expressed in dehiscent anthers of both cultivars 
(Collani, 2012). Despite such positive initial evidences, further 
genetic and molecular findings clearly demonstrated that these 
genes do not encode for the genetic determinants of the olive 
S-locus, as independent segregation of OeSRK-like and OeSCR-like 
genes was documented by means of SNP-based markers and 
no interaction between OeSRK-like and OeSCR-like proteins 
was observed by Yeast-2-Hybrid screens (data not shown). 

Although the role of these genes remains to be  disclosed, our 
negative results corroborate an olive SI system whose genetic 
determinism is different from that active in Brassicaceae and 
from the others molecularly characterized, according to the 
peculiar features of olive SSI. This result supports the hypothesis 
that independent evolution of multiple SI systems has occurred 
in flowering plants (Ferrer and Good, 2012).

Activity and localization of enzymes, such as RNases, putatively 
involved in pollen rejection mechanism under self-pollination, 
have been described in olive (Serrano and Olmedilla, 2012), 
as well as the occurrence of programmed cell death in olive 
pollen, as a consequence of the SI response and the differential 
level of reactive oxygen and nitrogen species between self-
compatible and self-incompatible pollen grains (Serrano et  al., 
2012). However, their role in the SI mechanism needs to 
be  further investigated.

A high throughput transcriptomic study of olive self-pollinated 
flowers identified a wide set of transcripts showing extensive 
expression differences between pseudo-self-compatible (cv. Frantoio) 
and self-incompatible (cv. Leccino) cultivars, confirming that 
biochemical, physiological, and signaling changes occur when 
incompatibility is broken down (Alagna et  al., 2016). These data 
represent a valuable resource for the identification of genes  
related to PSC.

In addition, several enzymes putatively involved in the 
regulation of pollen tube growth and in the modulation of 
temperature-dependent reproductive processes were identified 
by studying the proteomic profile of olive stigma exudate (Rejón 
et al., 2013). The ReprOlive database, built on the transcriptomic 
information of olive reproductive tissues (Carmona et al., 2015), 
as well as the availability of the sequence of cultivated and 
wild olive genomes (Cruz et  al., 2016; Unver et  al., 2017), 
provides further high valuable tools for the identification of 
candidate genes involved in SI signaling and for the discovery 
of the molecular mechanisms involved in PSC. These studies 
will be  facilitated by the trans-generic functional homology 
of olive SI, which will allow for the application of discoveries 
from P. angustifolia and F. ornus species to olive.

A B

FIGURE 2 | Pseudo-self-compatibility data in olive cultivars. (A) Variation of pseudo-self-compatibility of three olive genotypes observed under field conditions. 
Percentage of pollen tubes germinated in different pistil tissues of cv. Leccino and Frantoio (G1 incompatibility group) and cv. Dolce Agogia (G2 incompatibility 
group) was determined analyzing a total of 34.000 pollen grains. Samples were collected at 6 days after anthesis in both self-pollinated and open-pollinated (control) 
flowers. Pollen grains were divided into five different classes (different colors). About 9.5% of cv. Frantoio self-pollen tubes grew through the transmitting tissues 
reaching the distal part of the style, indicating pseudo-self-compatibility. The few pollen grains of cv. Dolce Agogia, reaching the proximal part of the style, are 
presumably due to slight differences in the incompatibility response of the G2 incompatibility group compared to G1. (B) The number of seeds obtained from 
pollination with compatible and self-pollen in seven cultivars under field conditions. Paternity was validated by using microsatellite markers.
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CONCLUSIONS AND PERSPECTIVES

The important advances made in the study of the olive SI system 
do not explain the occurrence of self-fertility in some cultivars, 
confirmed by many studies and certainly regulated by both genetic 
and environmental factors. New observations should be  carried 
out in order to clarify how germination of pollen grains and 
their growth within the transmitting tissue of the style may 
occur in a context of incompatibility. The availability of genetic 
materials and microscopic, genomic, and transcriptomic resources 
for the study of olive reproductive constrains should allow the 
elucidation of the selfing mechanism, as well as the identification 
of putative genes involved in the PSC. Understanding the 
mechanisms regulating SI and PSC will have a huge impact on 
olive orchard management and breeding programs, offering new 
tangible opportunities for improving olive and olive oil production.
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