
Plasma Physics and Controlled Fusion

PAPER

Influence of rotation on axisymmetric plasma
equilibria: double-null DTT scenario
To cite this article: Matteo Del Prete and Giovanni Montani 2021 Plasma Phys. Control. Fusion 63
125022

 

View the article online for updates and enhancements.

You may also like
Impurity screening behavior of the high-
field side scrape-off layer in near-double-
null configurations: prospect for mitigating
plasma–material interactions on RF
actuators and first-wall components
B. LaBombard, A.Q. Kuang, D. Brunner et
al.

-

Integrable structures and the quantization
of free null initial data for gravity
Andreas Fuchs and Michael P
Reisenberger

-

The Poisson brackets of free null initial
data for vacuum general relativity
Michael P Reisenberger

-

This content was downloaded from IP address 192.107.67.222 on 17/01/2022 at 10:48



Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 63 (2021) 125022 (8pp) https://doi.org/10.1088/1361-6587/ac30cc

Influence of rotation on axisymmetric
plasma equilibria: double-null DTT
scenario

Matteo Del Prete1,∗ and Giovanni Montani1,2

1 Physics Department, ‘Sapienza’ University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy
2 ENEA, Fusion and Nuclear Safety Department, C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma),
Italy

E-mail: matteo.delprete@uniroma1.it

Received 5 July 2021, revised 16 September 2021
Accepted for publication 15 October 2021
Published 12 November 2021

Abstract
We study the influence of toroidal plasma rotation on some relevant tokamak equilibrium
quantities. The Grad–Shafranov equation generalised to the rotating case is analytically solved
employing two different representations for the homogenous solution. Using an expression in
terms of polynomials, we describe the separatrix shape by a few geometrical parameters,
reproducing different plasma scenarios such as double-null and inverse triangularity. In this
setting, the introduction of toroidal rotation corresponds to variations on relevant plasma
quantities, most notably an enhancement of the poloidal beta. Using a more general expression
in terms of Bessel functions, we reconstruct the full plasma boundary of the double-null
configuration proposed for the upcoming Divertor Tokamak Test experiment, demonstrating
how said configuration is compatible with different values of the plasma velocity.
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1. Introduction

The basic concept at the ground of any operational regime of a
tokamak device [1] is the existence of an axisymmetric plasma
equilibrium [2]. In a real machine, this equilibrium can exist
for a timewhich is inherently limited by the duration of the dis-
charge. The duration is usually much longer than the charac-
teristic timescale on which magnetohydrodynamic instabilit-
ies develop, leading to abrupt losses of confinement, and much
shorter than dissipation timescales due to resistivity or other
non ideal effects, leading to slow losses of confinement.

The description of a tokamak equilibrium is based on
the balance of the ideal MHD forces, i.e. pressure gradi-
ents versus magnetic pressure and tension, resulting in the
well-known Grad–Shafranov equation (GSE) [3], in which the
presence of steady matter flux is neglected. This assumption

∗
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can be motivated by the conditions of operation of toka-
mak machines, which discharge is, in general, associated to a
flux-free quasi-ideal plasma. Nonetheless, the emergence of a
‘spontaneous rotation’ in Tokamak devices has been observed
since the early nineties [4, 5], both in the toroidal and pol-
oidal directions. Many proposals have been argued in order
explain this phenomenon, which can be interpreted as a res-
ult of a self–organization of the plasma in the transition from
turbulent to laminar flow. Indeed, the transition between turbu-
lent and laminar regimes is an interchange phenomenon, due
to the unavoidable linear and nonlinear instability of the rotat-
ing plasma [6, 7].

Another important operation condition of a tokamak lead-
ing to important rotation profiles is the heating of the plasma
via neutral beam injection: the beam injected in the tangential
direction, transferring angular momentum into the plasma, can
drive rotation flows inside the configuration [8].

According to these considerations, the inclusion of rotation
in the computation of a tokamak equilibrium is a relevant topic
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that may require increasing attention in the years to come. The
theory of rotating tokamak equilibria has been developed by
many authors (e.g. see [9, 10] and citing articles), with most
studies mainly relying on the introduction of a Bernoulli–like
function (as in traditional fluid dynamics) in order to general-
ize the GSE to a plasma with flow, while keeping its mathem-
atical form mostly intact [11].

Here, we investigate the case of a tokamak equilibrium in
the presence of a toroidal velocity field and we address its
description through the introduction of a generalized pressure
function, as in [9]. We first construct simple semi–analytical
solutions of the obtained equation, generalizing the well-
known Solov’ev scenario [12]. Then, we implement our model
to study how the double–null configuration at 5 MA of the
Divertor Tokamak Test (DTT) Italian proposal [13] is modified
by the presence of toroidal rotation.We are able to characterize
the influence of toroidal velocity on some basic plasma quant-
ities, such as the poloidal beta βpol, the plasma current Ip, the
profile of the safety factor q, the position of the magnetic axis
and the morphology of the separatrix with respect to the isobar
surface at zero pressure, taken as the plasma boundary.

Clearly, the introduction of a toroidal rotational field in a
Tokamak equilibrium can also be studied via numerical mod-
elling, see for instance [14]. However, our semi–analytical
study, based on the construction of a generic solution for a
linear GSE, is a powerful tool to establish precise relations
among the model parameters. The choice of a linear equilib-
rium allows to individualize the basic eigenfunctions of the
configurational problem and it is justified by the expansion of
the unknown functions of the magnetic flux function up to the
lowest order of approximation. In this respect, our correlation
between the parameter governing the rotation intensity and the
β value of the plasma must be regarded as a general feature of
the considered family of plasma configurations.

The manuscript is structured as follows. In section 2, we
recall the fundamental equations from the known literature,
we outline the basis for our study introducing the necessary
assumptions, and we provide a convenient form for the par-
ticular solution of the equilibrium. In section 3, we solve the
homogeneous problem using a purely polynomial expansion
of the magnetic flux function ψ. We show how this simple
solution is able to represent different plasma scenarios, char-
acterized only by few constraints, and what is the impact of
plasma rotation on the equilibrium properties. In section 4, we
provide a different, more general solution to the homogeneous
problem, which allows for a more precise determination of
the plasma separatrix while still maintaining a flexible fitting
procedure. We study the specific case of the DTT double-null
scenario, illustrating the fitting procedure and the impact of
rotation on some relevant equilibrium properties. Concluding
remarks follow.

2. Basic equations

The equilibrium of magnetically confined plasmas can be
described by few basic equations:

ρ(v·∇)v=−∇P+ J×B , (1)

∇·B= 0 , (2)

µ0J=∇×B , (3)

which express the conservation of the momentum of a fluid
with mass density ρ, velocity field v and pressure P in the
presence of self-consistent current density J andmagnetic field
B. Working in cylindrical coordinates (R,ϕ,Z) and assuming
axisymmetry, i.e. ∂ϕf= 0 for any quantity f, the magnetic field
can be expressed as B= µ0I∇ϕ+∇ψ×∇ϕ, in terms of the
two scalar functions ψ and I, which are related to the poloidal
magnetic flux and toroidal magnetic field, respectively. Fur-
thermore in the static case, v= 0, the equilibrium problem
reduces to the well-known Grad–Shafranov equation:

∆∗ψ =−µ2
0II

′ −µ0P
′R2 , (4)

where ∆∗ ≡ ∂2R− ∂R/R+ ∂2Z, and the prime denotes differen-
tiation with respect to ψ. The solutions of this equation for a
confined plasma correspond to nested tori of constant ψ, and
have been extensively studied in the literature [15]. Earliest
analytical studies focus on the Solov’ev scenario, in which the
right-hand side of the equation is made independent on ψ by
the assumptions:

µ0P
′ = S1 , µ2

0II
′ = S2 , (5)

=⇒ ∆∗ψ =−S2 − S1R
2 , (6)

with S1,2 = const. Other choices can be made while still pre-
serving the linearity of the equation, like quadratic source
function scenario with P ′, II ′ ∼ ψ, or the dissimilar source
function scenario, with P ′ ∼ const., II ′ ∼ ψ.

The analysis is more subtle in the case of a plasma con-
figuration rotating in the toroidal direction with velocity v=
ωR2 ∇ϕ. In this case equation (4) can be generalised as(

∆∗ψ+µ2
0II

′)∇ψ =−µ0R
2
(
∇P− ρRω2 ∇R

)
, (7)

where two difficulties arise: the plasmamass density enters the
equilibrium balance, and the pressure is no longer a pure func-
tion of ψ. However, it is clear from ideal Ohm’s law, E+ v×
B= 0, combined with stationary Faraday’s law, ∇×E= 0,
that the rotation frequency ω is a new surface function, a res-
ult also known as corotation theorem [16]. The set of equations
must be closed introducing an equation of state for the fluid,
with many possible choices [17]; here we consider the ideal
gas law P= ρ kBmi

T, where kB is the Boltzmann constant, mi

is the ion mass, and T is the plasma temperature, which can
be safely assumed to be a surface function in tokamak equi-
librium configurations, due to the high parallel transport in
these devices. In view of these assumptions, equation (7) can
be rewritten as an equality involving two gradients, ∇ψ and

∇
(
kB
mi
T log

ρ

ρ0
− ω2R2

2

)
≡∇θ . (8)
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Hence, the newly defined θ must be a function of ψ, and the
resulting equation is

∆∗ψ

=−µ2
0II

′ −µ0R
2 ρ

[
θ ′ +R2ωω ′ +

(
1− log

ρ

ρ0

)
kB
mi
T ′
]
.

(9)

This expression is further simplified defining a generalized
pressure PT(ψ) = ρ0

kB
mi
Texp(miθ

kBT
) = Pexp(−miω

2R2

2kBT
)which is

a source function itself, and coincides with the thermodynamic
pressure in the ω→ 0 limit [9]. Finally we have:

∆∗ψ =−µ2
0II

′ −µ0R
2

[
P ′
T +PTR

2

(
miω

2

2kBT

) ′]
e
miω

2R2

2kBT ,

(10)

which gives the equilibrium of a rotating plasma once the arbit-
rary functions I, PT, ω and T are assigned.

Before continuing our analysis, let us introduce the follow-
ing normalizations: defining the plasmamajor radius as R0 and
the toroidal magnetic field at the major radius as B0, we nor-
malize length with R0, magnetic field with B0, magnetic flux
with B0R2

0, pressure with B
2
0/2µ0, I with B0R0/µ0 and current

density with B0/µ0R0. All quantities are to be meant adimen-
sional from now on, unless stated otherwise.

2.1. Solov’ev-like configuration

Similarly to the Solov’ev assumption in the static scenario, we
can make the right-hand side of equation (10) independent on
ψ by setting

P ′
T

2
= P1 , II ′ = I1 ,

miω
2R2

0

2kBT
=M2 , (11)

where P1, I1,M are assumed as constants. The latter expresses
the ratio of plasma velocity to thermal velocity at the plasma
major radius, and it serves as a parameter to introduce rotation
in the equilibrium computation. The resulting expressions for
the equilibrium equation and the relevant quantities are:

∆∗ψ =−R2P1e
M2R2

− I1 , (12)

PT(ψ) = 2P1ψ , P(ψ,R) = 2P1ψe
M2R2

, (13)

I(ψ) =
√
2I1ψ+ I0 , ω(ψ) =

M
R0

√
2kBT(ψ)/mi , (14)

where I0 is an integration constant introduced to take into
account the vacuum toroidal magnetic field. We observe that,
even though in the presence of plasma motion the pressure
is not constant on magnetic surfaces, like in the static case,
according to equation (13) we still have P= 0 on the separat-
rix just defined. Hence the last magnetic surface and the curve
of vanishing plasma matter density coincide, a result which

in general does not hold in the presence of plasma motion (see
[18] for a recent analysis, or [19] for a more general approach).

As usual in the theory of linear differential equations, the
full solution is given by the sum of a particular solution ψP,
plus the general homogeneous solution defined by∆∗ψH = 0.
It is easy to verify by substitution that the former can bewritten
as:

ψP =
P1

4M4

[
1+M2R2 − eM

2R2
]
− I1

2
Z2 . (15)

In this form, we naturally recover the static Solov’ev solution
−P1R4/8− I1Z2/2 in the M→ 0 limit.

3. Polynomial solution

Concerning the solution of∆∗ψH = 0, the usual strategy is to
employ separation of variables and assume an expression like
ψH ∼ f(R)g(Z). The linearity of the equation allows to con-
sider a sum of any number of such terms. For instance, many
authors consider polynomials in the Z variable, and in the spe-
cial case of up-down symmetry, corresponding to even power
only, the following representation can be used [20]:

ψH =
∑

n=0,2,...

n/2∑
k=0

fn,k(R)Z
n−2k . (16)

It can be verified by substitution that the functions fn,k(R) are
given recursively by the relations

(∂2R− ∂R/R)fn,0 = 0 ,

(∂2R− ∂R/R)fn,k =−(n− 2k+ 1)(n− 2k+ 2)fn,k−1 . (17)

This representation of the homogeneous solution in terms of
the lowest even powers of Z is suitable for describing up–down
symmetric configurations in terms of the minimum number of
parameters. For our first analysis, we consider equation (16)
truncated at a maximum index n= 6, resulting in the following
expression:

ψH = C0 +C2R
2 +C4(R

4 − 4R2Z2)

+C6(R
6 − 12R4Z2 + 8R2Z4)

+C8
(
R8 − 24R6Z2 + 48R4Z4 − 64R2Z6/5

)
+C10

(
R2 + 2Z2 − 2R2 ln(R)

)
+C12

[
−15R4 + 24R2Z2 + 8Z4 + 12(R4 − 4R2Z2) ln(R)

]
+C14

[
5R6 − 45R4Z2 + 12R2Z4 + 8Z6/5

−3
(
R6 − 12R4Z2 + 8R2Z4

)
ln(R)

]
, (18)

where Ci (i= 0,2, . . . ,14) are arbitrary integration constants.
Without losing real physical content, and to simplify the fit-
ting procedure, we set Ci to zero for i⩾ 10, so eliminating all
terms ∝ ln(R). The remaining free constants are determined
according to the plasma minor radius a, the triangularity δ,
the elongation κ and the boundary curvature at the outermost
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point c (inversely proportional to the squareness of the plasma
boundary), via the conditions:

ψ(1− a,0) = 0 , (19)

ψ(1+ a,0) = 0 , (20)

ψ(1− aδ,aκ) = 0 , (21)

∂ψ

∂R
(1− aδ,aκ) = 0 , (22)

∂2ψ

∂Z2

/
∂ψ

∂R
(1+ a,0) = c . (23)

(See figure 1 for a visual reference). Concerning the constants
P1, I1, I0 contained in equations (14) and (15), we set their val-
ues according to the desired plasma poloidal beta βp, current
Ip and toroidal magnetic field on axis, given by:

βpol =

´
Pds´
ds

=
P1

S

ˆ
R
ψ(R,Z)eM

2R2

B2
ds , (24)

Ip =
ˆ
Jϕds=

ˆ
RP1e

M2R2

+
I1
R
ds , (25)

Bϕ(R0,0) =

√
2I1ψ(R0,0)+ I0

R0
. (26)

The integrals in the above equations are performed over
the confined plasma region inside the magnetic separatrix,
defined by ψ(R,Z) = 0 and corresponding to the boundary
between closed and open magnetic lines. The same region
can also be described by the points (R,Z) ∈ {1− a,1+ a}×
{−Zm(R),Zm(R)}, withψ(R,Zm(R)) = 0. The function Zm(R)
can be calculated explicitly, describing the plasma upper
boundary (or lower, with minus sign) in terms of a, δ, κ, c,
P1, I1 andM, however we omit its cumbersome expression for
brevity. In general, closed–form expressions for the integrals
cannot be found, hence we resort to standard numerical recipes
for their calculation. In the practical implementation, we find
that a simple guess and check strategy leads to satisfying res-
ults after a single iteration.

3.1. Study of rotation influence

We note that the rotation velocity is treated as a free para-
meter so far, via the constantM, withM= 0 corresponding to
the static plasma case. Within this framework, we are able to
evaluate its direct impact on the other equilibrium features. In
figure 2 we show the capabilities of solution equation (18) of
reproducing plasma shapes with different values of the para-
meters, as in table 1.

With regard to the second row, the pointy shape of the pro-
file at its top and bottom suggests the presence of x-points.

Figure 1. Analytic plasma shape defined as the curve ψ(R,Z) = 0,
parametrized through the constants a, δ, κ and c, for some arbitrary
values of the physical constants P1, I1 and M.

Table 1. Values of the minor radius a, triangularity δ, elongation κ
and curvature c for the plasma configurations of figure 2.

a δ κ c

First row 0.25 0.35 1.20 5
Second row 0.30 0.45 1.92 2
Third row 0.25 −0.35 1.80 1

However, it must be noted that the solution used here has not
enough free constants to impose the proper null condition on
the magnetic field at a desired location; the x-points can only
emerge at a certain location, fixed by parameters δ and κ, for
specific choices of a and c. We will see in the next section how
to address this shortcoming.

It is worth noting that the magnetic flux surfaces are not
affected by plasma rotation as much as the isobaric surfaces.
This can be explained considering equation (13) describing the
plasma pressure, which contains the exponential term eR

2M2

and thus a more sensitive dependence on the parameter M.
Concerning other relevant plasma quantities, figure 3 shows
the dependence on M of βpol, Ip and q95, the safety factor at
95% plasma volume, normalized to their respective values in
the static case. The other parameters used for the fit corres-
pond to the second row scenario of table 1. While the entity of
the variations differ for other choices of the parameters, how-
ever, the general qualitative behaviour is consistently that of
an enhancement of both βpol and Ip, while the safety factor is
reduced. In all the considered cases this has never resulted in
breaking the Kruskal–Shafranov stability condition q> 1 over
the whole plasma profile, even for unrealistically high rotation
velocities.

These results suggest that, when modeling real plasma
equilibria using a static analytical solution or numerical code,
the errors committed can get increasingly large with plasma
rotation. The evaluation ofM can thus give quantitative insight
on the necessity to employ an exact solution or equilibrium
solver which take the plasma rotation into account.

4. General solution

Suppose that the plasma boundary curve is known, either ana-
lytically or numerically, and one wants an accurate fit reprodu-
cing its shape. The polynomial solution equation (18) studied
in the previous section is easy to implement, requiring only

4
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Figure 2. Contours of constant magnetic flux ψ (left) and pressure
P (right) in the (R,Z) plane, calculated for the M= 0 (solid) and
M= 0.6 (dashed) cases and corresponding to the parameters
reported in table 1.

few constraints in order to obtain the equilibrium, but it evid-
ently fails in such situations. As discussed above, the position

Figure 3. Variation of poloidal beta, plasma current and safety
factor at 95% plasma volume, with respect to the parameter M, each
normalized by their respective value in the static case. The other
parameters of the configuration are kept fixed and correspond to
table 1, second row.

of x-points, i.e. boundary points with vanishing magnetic field
gradient, can be fixed exactly only at the cost of neglecting
other constraints. This issue could be overcome by extending
the expression in equation (18) up to a suitable higher power
of Z, thus generating new free constants in the solution. How-
ever, we show here that the general solution of the homogen-
eous equation ∆∗ψH = 0 can be written in a compact form,
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without any truncation, and that it can be used to solve this
kind of problem.

To find the general solution, we express ψH as a Fourier
transform in the Z variable:

ψH(R,Z) =
ˆ ∞

−∞
χ(R,k)eikZdk. (27)

Its reality is ensured by the condition χ(R,−k) = χ(R,k) (the
bar indicates the complex conjugate). Plugging equation (27)
into∆∗ψH = 0, we obtain an ordinary differential equation in
the variable R for each k. By making the change of variables
xk = |k|R and χ(R,k) = Rϵ(xk,k) (for k ̸= 0), it is easy to verify
that:

x2kϵ(xk,k)
′ ′ + xkϵ(xk,k)

′ −
(
1+ x2k

)
ϵ(xk,k) = 0 , (28)

where the prime denotes differentiation with respect to xk. This
is known as Bessel’s modified equation with index 1, and its
solution is readily available in mathematical literature:

ϵ(xk,k) = akI1(xk)+ bkK1(xk) , (29)

where ak,bk are functions of k. By substitution back into
equation (27), we obtain:

ψH(R,Z) = R
ˆ ∞

−∞
[akI1(|k|R)+ bkK1(|k|R)]eikZdk , (30)

which is the general solution of the homogenous problem.
This expression can be adapted to a given scenario by

imposing specific boundary conditions. In this respect, for the
sake of simplicity, we represent the functions ak, bk as a sum
of sufficiently narrowGaussians (i.e. delta functions), centered
around arbitrarily given wave vectors ki and weighted by amp-
litudes āi, b̄i, thus obtaining:

ψH(R,Z) = R
N∑
i=1

[
āiI1(R|ki|)+ b̄iKi(R|ki|)

]
cos(kiZ) , (31)

where the term cos(kiZ) is the reduction of the complex expo-
nential to the real, up-down symmetric case. Then, a given
set of points {rl,zl} lying along the boundary curve of the
addressed plasma configuration generates an associated set of
algebraic equations of the form ψ(rl,zl) = 0, which can be
solved to determine the arbitrary constants.

4.1. DTT double-null configuration

We illustrate this procedure in the practical case of the double-
null plasma scenario predicted for the upcoming DTT experi-
ment. Its main parameters are reported in table 2, and are avail-
able in [13]. along with the predicted separatrix shape.

We proceed as follows: firstly, we model the desired sep-
aratrix as an analytic curve, using a piecewise rational expres-
sion (e.g. quadratic). Secondly, we extract a set of boundary
points chosen at random but equally distributed around the
plasma region. Thirdly, the set of wavenumbers ki is chosen as

Table 2. Main plasma parameters of the DTT double-null scenario,
taken from [13].

Ip (MA) βpol q95 R0 (m) a (m) δ κ

5.00 0.43 2.80 2.11 0.64 0.45 1.92

Figure 4. Contours of constant ψ (left) and P (right) in the (R,Z)
plane for the DTT double-null plasma, in the static case (M= 0,
solid blue) and rotating case (M= 0.6, dashed red).

an equally distributed grid of values close to the scale length
of the configuration, estimated as π/(aκ). The solution of the
resulting set of algebraic equations gives the constants āi, b̄i
as functions of P1, I1 andM. The former two are still obtained
according to equations (24)–(26), and we can study the beha-
viour of the equilibrium for different values of M.

Figure 4 shows the fitted magnetic configuration and the
curves of constant pressure, where we highlighted the cor-
respondence between the set of boundary fitting points and
the obtained separatrix. In the presence of rotation, the qual-
itative behaviour of the plasma is still that of an outward
shift of magnetic and pressure lines, while the separatrix
is kept fixed by the imposed constraints and has no major
modifications.

Concerning the safety factor profile, plotted in figure 5, we
predict a slight suppression in the core region, while q actu-
ally increases closer to the plasma boundary, contrary to the
behaviour observed in the previous section using solution (18).
However, this should not be interpreted as a fundamental dif-
ference between the two analytical approaches. In fact, even
though the DTT plasma looks similar to the one shown in
figure 2 (second row), their magnetic flux profiles are dif-
ferent, as shown in figure 6. By virtue of equations (14) and
(25), also the current density profiles are different, hence we
have no reason to believe their behaviour should be the same
with respect to the safety factor. Concerning the equivalence
of the two methods, in the same figure we also show the pro-
file obtained from the Bessel expression (31) fitted on a set
of points lying along the boundary of the polynomial solu-
tion of figure 2 (second row). This results in essentially the
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Figure 5. Safety factor profile of the DTT double-null scenario in
the static case (M= 0, solid blue) and rotating case (M= 0.6,
dashed red).

Figure 6. Equatorial profile of the magnetic flux function for the
DTT case (solid grey), and the scenario of table 1, second row, fitted
with solution (18) (dashed blue) and (31) (dotted blue), assuming
the same values of βpol and Ipl as in DTT.

same plasma profile, thus showing the compatibility of the two
methods.

Finally, we can plot the curves of constant toroidal speed
ω(ψ)R by assuming a simple form for the temperature, taken
as T(ψ) = Tedge +

ψ
ψaxis

(Tcore −Tedge), with the temperature
values according to [13]. The result is shown in figure 7, along
with the morphology of pressure lines in the vicinity of the
x-point. In this formalism, we do not expect serious modifica-
tions to the shape of the plasma in this region, having imposed
our constraints along the separatrix itself. However, observing
how the pressure (and its gradient) are suppressed in the pres-
ence of rotation might provide useful information when con-
sidering transport dynamics. For example, it is common prac-
tice to feed equilibrium data obtained from a given solver into a
separate code which simulates particle transport. A scenario in
which the parameterM is measured to be consistently far from
0, giving rise to noticeable modifications of the equilibrium,
would need to take plasma rotation into account. Of course, the

Figure 7. Contours of constant toroidal velocity ωR over the whole
configuration (left), and contours of constant pressure in the vicinity
of the x-point (right, M= 0 solid blue, M= 0.6 dashed red).

present analysis is aimed at providing a simple semi-analytical
tool to gain insight in this direction, while accurate equilibrium
solvers with plasma flow should be used for more elaborate
analysis (e.g. [14]).

5. Concluding remarks

In this work, we studied the equilibrium of an axisymmetric
plasma in the presence of rotation along the toroidal direction.
After recalling the mathematical basic formalism, we adop-
ted suitable assumptions on the arbitrary functions in order
to obtain analytic plasma profiles, with enough freedom to
represent a variety of plasma settings. In particular, the poly-
nomial expression of section 3 requires to fix only few basic
plasma parameters, such as the minor radius and the triangu-
larity. This simplicity allows to find analytical expressions for
the plasma separatrix and to deal with a variety of scenarios,
e.g. double-null and negative triangularity. Then, in section 4,
we presented the general solution of the considered problem,
and illustrated a suitable fitting procedure when dealing with a
known plasma separatrix (either analytically or numerically).
As a practical implementation of this framework, we stud-
ied the double-null plasma scenario proposed for the upcom-
ing Italian experiment DTT, estimating the impact of plasma
rotation on the equilibrium properties and highlighting some
points of interest. One example is the modification of the
plasma pressure gradient morphology in the vicinity of the
x-point, with possible effects on particle transport dynamics
in that region.

Of course, the analysis performed here has the merit of sim-
plicity due to its analytic nature, but needs to be confirmed
by more detailed numerical studies when dealing with more
realistic situations. Moreover, many physical constraints here
neglected (e.g. the specifics of the given tokamak magnetic
coils, or its current drive mechanism) would need to be taken
into account. Nevertheless, the two approaches of sections 3
(reduced) and 4 (general) agree on the qualitative behaviour
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of the plasma parameters as functions of the rotation velo-
city, hence they can both be used as quick investigative tools
concerning the introduction of toroidal rotation in tokamak
plasma equilibria. In experimental situations, the parameterM
can be estimated from equation (14) providing direct meas-
urements of ion rotation speed and temperature, e.g. through
diagnostics like charge exchange recombination spectroscopy
[21]. Depending on the value of M, quantitative estimates on
the relevance of plasma rotation can be argued by the methods
outlined here.
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