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Abstract
Atmospheric pollution from fine particulate matter (PM2.5) is one of the major concerns in China
because of its widespread and harmful impacts on human health. In recent years, multiple studies
have sought to estimate the premature mortality burden from exposure to PM2.5 to inform policy
decisions. However, different modeling choices have led to a wide array of results, with significant
discrepancies both in the total mortality burden and in the confidence intervals. Here, we present a
new comprehensive assessment of PM2.5-related mortality for China, which includes quantification
of the main sources of variability, as well as of age and province-specific premature mortality
trends during 2015–2018. Our approach integrates PM2.5 observations from more than 1600
monitoring stations with the output of a high-resolution (8 km) regional simulation, to accurately
estimate PM2.5 fields along with their uncertainty, which is generally neglected. We discuss the
sensitivity of mortality estimates to the choice of the exposure-response functions (ERFs), by
comparing the widely used integrated exposure response functions (IERs) to the recently
developed Global Exposure Mortality Models (GEMMs). By propagating the uncertainty in
baseline mortalities, PM2.5 and ERFs under a Monte Carlo framework, we show that the 95%
confidence intervals of mortality estimates are considerably wider than previously reported. We
thus highlight the need for more epidemiological studies to constrain ERFs and we argue that
uncertainty related to PM2.5 estimate should be also incorporated in health impact assessment
studies. Although the overall mortality burden remains vast in China (~1.6 million premature
deaths, according to GEMMs), our results suggest that 200 000 premature deaths were avoided and
195 billion US dollars were saved in 2018 compared to 2015, bolstering the mounting evidence
about the effectiveness of China’s air quality policies.

1. Introduction

Exposure to high concentrations of air pollutants,
including fine particulate matter (i.e. PM2.5), leads
to premature mortality related to cardiovascular and
pulmonary diseases, as highlighted by a number of
epidemiological studies (Kan et al 2012, Apte et al
2015, Zhang et al 2017). As a result of rapid eco-
nomic growth, industrialization and urbanization,
China is experiencing severely degraded air quality
conditions (Li et al 2016a) and ranks first for prema-
ture mortality due to air pollution with more than

one million deaths per year (Lelieveld et al 2015,
Gu et al 2018), followed by India with ~650 000
deaths (Lelieveld et al 2015). In response to this
situation, since the year 2010, the Chinese govern-
ment has implemented clean air policies to reduce
air pollution levels (State-Council 2013) by impos-
ing more stringent emission standards and by pro-
moting transition to cleaner fuels and/or non-fossil
energy sources for the industrial, power, and resid-
ential sectors (Zheng et al 2018). These actions will
contribute to mitigate not only pollution impacts on
air quality (Yang and Zhang 2018), but also those
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on climate change (Li et al 2018). The recent decreas-
ing trend in pollution concentrations (during 2015–
2017) has been linked to the effective implement-
ation of emissions reduction strategies by purely
observation-based studies (Silver et al 2018) as well
as by model simulations (Ding et al 2019).

Multiple studies have sought to estimate the
nationwide mortality burden associated with PM2.5

in China, by employing different techniques. Most
of these analyses rely on regional chemical trans-
port model (CTMs) simulations, which, however,
are subject to significant uncertainties that are often
not quantified (Lelieveld et al 2015, Silva et al 2016,
Butt et al 2017, Hu et al 2017, Zheng et al 2017b,
Aunan et al 2018, Gao et al 2018). Depending on the
simulation setup and the chosen exposure-response
functions (ERFs), significantly different estimates of
the total premature mortality burden were presen-
ted, ranging from 916 000 premature deaths in 2014
(Archer-Nicholls et al 2016) to 1331 000 in 2013 (Gao
et al 2018). Much larger figures (up to ~2.47 million)
are obtained when using the latest exposure response
functions from Burnett et al (2018). Furthermore,
the 95% confidence intervals (CI) reported in such
studies can be as narrow as (1 090 000–1 190 000)
(Aunan et al 2018) or as wide as (168 000–1 796 000)
(Gu et al 2018). Besides model simulations and ERFs,
other sources of uncertainty include baseline mortal-
ities and exposed population estimates (Kodros et al
2018).

Mortality estimates have also been proposed
based on a combination of ground and/or satellite
observations (Zhou et al 2015, 2019, Jerrett et al 2017,
Dong et al 2018, Huang et al 2018), despite being
mostly focused on geographically limited areas. A
few attempts to combine observations—either from
monitoring stations or satellites—and CTM results
were made to overcome limitations of prior studies,
both worldwide (Ford and Heald 2016, Van Donke-
laar et al 2016, Shaddick et al 2018) and in China (Liu
et al 2016, Liang et al 2017, Bai et al 2019, Zou et al
2019). For instance, multiple studies used different
geostatistical techniques to integrate PM2.5 ground
measurements, CTMs output, satellite observations
of AODand other land use andmeteorological factors
to estimate PM2.5 exposure at different spatial scales,
ranging from the city-level (Li et al 2016b, Tao et al
2020) to regional and national scales (Liang et al 2017,
Bai et al 2019, Wei et al 2019). Although these works
improved representation of PM2.5 spatial patterns,
the uncertainty in PM2.5 concentrations—as well as
its propagation to the mortality estimate—was not
quantified. Using data assimilation techniques, Liu
et al (2016) quantified the PM2.5 uncertainty from
a CTM and observations, although the resolution of
that simulation was rather coarse (45 km).

Building from previous attempts to combine
observations and modeling results, here we pro-
pose a novel approach to quantify the PM2.5-related

mortality burden and its uncertainty in China. Our
methodology integrates ground-based observations
from the recently established Chinese monitoring
network (>1500 sites) with a high-resolution CTM
simulation (8 km). This work aims to:

(a) Provide a multi-year assessment of the mor-
tality burden related to PM2.5 (2015–2018) by
nudging model results to the observations.

(b) Discuss the effect of using recently revised ERFs
(Burnett et al 2018) in the recent mortality
trends.

(c) Overcomekey limitations of previous studies on
the uncertainty of such estimates.

Specifically, our methodology allows estimat-
ing the uncertainty in PM2.5 concentrations and its
propagation to the final mortality results. We show
that confidence intervals of mortality estimates pre-
viously reported are likely narrower than the true
ones, as they do not take into account PM2.5 uncer-
tainty (e.g. Reddington et al 2019, Zou et al 2019).
We discuss nationwide and province-level mortality
trends during 2015–2018 as well as the advantages
of using our modeling framework compared to other
approaches.

2. Methods

2.1. PM2.5 observations
This investigation is based on hourly PM2.5 con-
centrations for Mainland China and Hong Kong.
Data are retrieved from online repositories of the
Ministry of Ecology and Environment for Main-
land China (http://beijingair.sinaapp.com/) and of
the Hong Kong Environmental Protection Depart-
ment (www.epd.gov.hk/epd) for Hong Kong. The
monitoring network comprises 1601 and 16 sites for
Mainland China and Hong Kong, respectively. PM2.5

measurements are acquired and analyzed for four
consecutive years, from 2015 to 2018, at hourly res-
olution. Data are pre-processed for use in the mor-
tality assessment as described in the Supplementary
Information.

2.2. WRF-Chem simulation
Hourly PM2.5 concentrations are simulated by the
Weather Research and Forecastingmodel with Chem-
istry (WRF-Chem, version 3.9) (Grell et al 2005,
Skamarock and Klemp 2008) at 8 km resolution.
This resolution allows to capture important regional
details in complex mountainous areas and resolve
atmospheric processes at urban and regional scales
including formation/transformation/removal of air
pollutants, thus facilitating the direct comparison
between model results and station measurements.
Monthly varying anthropogenic emissions are based
on the EDGAR-HTAP (Emission Database for Global
Atmospheric Research for Hemispheric Transport of
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Air Pollution, v2.2 (Janssens-Maenhout et al 2015)
inventory which is available on a grid of 0.1◦ × 0.1◦

for the year 2010 (latest year available). EDGAR-
HTAPv2.2 uses the Model Intercomparison Study for
Asia Phase III (MIX) mosaic Asian emission invent-
ory version 1.0 at 0.25◦ × 0.25◦ horizontal resolution
(Li et al 2017), which incorporates data from theMul-
tiresolution Emission Inventory for China (MEIC,
www.meicmodel.org). We select EDGAR-HTAPv2.2
for consistencywith the simulation resolution (8 km).
Other emission inventories, like ECLIPSE (Klimont
et al 2017), provide more up-to-date emissions but
at a lower resolution (~50 km), which would cause a
mismatch with the resolution applied in our model
simulation. The entire 2015 is simulated, with a spin
up of 1 month (1–31 December 2014). Details on the
simulation setup are provided in the Supplementary
Information (table S2).

2.3. Integrating observations andWRF-Chem
results
To account for the uncertainty ofWRF-Chem results,
we introduce a statistical methodology which integ-
rates measured data in the analysis. The novelty of the
proposed methodology is three-fold: (i) nudging the
CTM results towards the observations, (ii) providing
a better quantification of themortality CI by account-
ing for PM2.5 uncertainty and (iii) estimating amulti-
year prematuremortality trend using only one year of
computationally-expensive WRF-Chem simulations.

The PM2.5 concentration field is reconstructed by
applying a linear regression model followed by kri-
ging of the residuals (ε) generated by the model:

logz= β0+ β1x+ ε (1)

where z is the corrected annual mean concentration
of PM2.5 in each grid cell, x is the logarithmically
transformed annual mean concentration simulated
byWRF-Chem, β0 and β1 are parameters to be estim-
ated. In other words, the observed data are first de-
trended using WRF-Chem results as the only covari-
ate, and then ordinary kriging is performed on the de-
trended data to include the residual spatial depend-
ence in the model. A logarithmic transformation is
used in equation (1) to work under the Gaussianity
assumption, as the original data are slightly skewed
(figure S1 (stacks.iop.org/ERL/15/064027/mmedia)).
Moreover, the logarithmic transformation avoids
unphysically negative PM2.5 concentrations that
could arise from the regression. Since x and ε are
Gaussian and the model is additive, we can calculate
the variance of the predictions (i.e. the uncertainty
in the PM2.5 field) by adding the variance related to
the linear regression part and the variance arising
from the kriging predictions. Details on the calcula-
tion of prediction variances for linear regression and
ordinary kriging are reported in the Supplementary
Information for completeness.

This procedure is applied for each year in the
2015–2018 period, with time-varying coefficients (i.e.
β0, β1 and the parameters of the variogram are estim-
ated on an annual basis). Linear regression paramet-
ers are estimated by maximizing the likelihood of the
data, which is equivalent to ordinary least squares
for linear models, and the variogram is estimated
using a spherical covariance function, which proved
to be themost numerically stable covariance function
across the years. The values of the estimated para-
meters can be found in the Supplementary Inform-
ation (table S1). For comparison with other mod-
els, hereinafter we will denote model (1) as ‘Regres-
sion+ Kriging’, whereas the same model without kri-
ging on the residuals ε will be denoted as ‘Regression-
only’ (i.e. model (1) where we do not model the spa-
tial structure in ε and we assume that the residuals
are instead normally distributed with zero mean and
variance σ2).

2.4. Population exposure andmortality estimates
Long-term premature mortality associated with
PM2.5 is calculated following a well-established
approach (e.g. Burnett et al 2014, Apte et al 2015):

Madk = Pak ×Bad ·
RRadk − 1

RRadk
(2)

where M is the estimated premature mortality bur-
den, P is the population count, B is the baseline mor-
tality rate and RR is the relative risk due to exposure
to annual mean concentration of PM2.5. Subscripts
a, d and k refer to the specific age interval, disease
and grid cell, respectively. As in previous studies (Gu
et al 2018), we consider premature mortality asso-
ciated to lung cancer (LC), ischemic heart disease
(IHD), stroke and chronic obstructive pulmonary
diseases (COPD) for individuals above 25 years with
5-years groupings (e.g. 25–30, 31–35, etc). Spatially
resolved population count from the 2017 LandScan
High Resolution global Population Data (Rose et al
2018) at ~ 1 km resolution is regridded to the WRF-
Chem grid to match the pollutant field. Population
is evolved during 2015–2018 by rescaling Landscan
data with the population structure from the Chinese
statistical yearbook, as done in Ding et al (2019).
China- and age-specific baseline mortality data for
2015, 2016 and 2017 are retrieved from the 2017
Global Burden of Disease (GBD) study (Dicker et al
2018). We linearly extrapolate baseline mortality data
for 2018 as they were not available at the time of the
analysis.

RRs are computed using the recent cause-specific
Global Exposure Mortality Models (GEMMs), which
were constructed based on cohort studies of outdoor
air pollution only (Burnett et al 2018):

RRk = exp

 θ log
(
z̃k
α + 1

)
1+ exp

(
− z̃k−µ

ν

)
 (3)
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where θ, α, µ, ν are age and disease-specific para-
meters, and z̃k is the maximum between zero and
the difference between the PM2.5 concentration in
grid cell k and the counterfactual concentration
(zcf = 2.4 µg m−3), i.e. the minimum concentration
below which no impacts are assumed to occur. The
parameters were estimated by Burnett et al (2018)
using cohort studies that cover the global exposure
range, including a Chinese male cohort. For com-
parison purposes, we also calculate RRs with the tra-
ditional IERs (Burnett et al 2014), which however
include risk information from indoor air pollution
and secondhand and active smoking:

RRk = 1+ α
{
1− e−γ(zk−zcf)

δ}
(4)

where α, γ and δ are age- and disease-specific para-
meters estimated in theGBD study (Dicker et al 2018)
along with their uncertainty. Equation (4) is valid
only if zk is greater than zcf, otherwise RR is set to
1. The counterfactual concentration for the IERs is
uniformly distributed between 2.4 and 5.9 µg m−3.
Totalmortality is finally computed as the sum for each
health endpoint, age group and grid cell:

M=
∑
a

∑
d

∑
k

Madk (5)

We also compute the monetary savings as the dif-
ference in mortality between two instances in time
multiplied by the value of statistical life (VSL), which
is assumed to be equal to 978 219 US dollars (in 2011
values), following previous literature (Zou et al 2019).
A thorough discussion of the monetary evaluation
uncertainty exceeds the scope of this work, but could
be considered in future investigations.

2.5. Uncertainty quantification
We propagate the uncertainty in the input (i.e.
PM2.5 fields, baseline mortality and ERFs paramet-
ers) to the mortality estimates with a numerical
approach. PM2.5 fields, baseline mortality and ERFs
are assumed to be Gaussian distributions, with para-
meters (i.e. mean and standard deviations) specified
in the Supplementary Information. For each Monte
Carlo simulation, we independently sample from
such distributions and we apply equations (2) to (5)
to calculate the mortality value for that specific sim-
ulation. To ensure robustness of our results (i.e. a
coefficient of variation of the estimated total mean
mortality less than 0.05%), we perform 108 000 sim-
ulations (i.e. 4500 simulations per processor distrib-
uted on 24 processors) which resulted in 108 000
total mortality values. The mortality central estim-
ate is therefore the mean of the 108 000 mortal-
ity estimates, whereas the 95% confidence interval
is calculated as the 0.025- and 0.975-quantiles of
the empirical distribution obtained with the 108 000
simulations.

To assess the influence of each input (i.e. PM2.5,
ERFs parameters and baseline mortality) on the total
uncertainty, we run four different cases by mar-
ginally assuming no uncertainty in some of the
input features (i.e. treating that input feature as an
exact value rather than a Gaussian random vari-
able): (i) only ERFs parameters are uncertain (ERFs-
only), as usually done in previous literature, (ii)
only ERFs and baseline mortalities are uncertain
(ERFs + BM), (iii) only ERFs and PM2.5 are uncer-
tain (ERFs + PM2.5) and (iv) all three input features
are uncertain (ERFs+ BM+ PM2.5).

3. Results

3.1. Model evaluation
Annual PM2.5 concentrations are generally well
reproduced by the high-resolution WRF-Chem sim-
ulation, with 93.5% of the modeled values being
within a factor of 2 of the measured concentrations
(figure S2). On average, the model overestimates
observations, with a mean bias of 10.16 µg m−3 (fig-
ure S2(b)), which is likely related to the mismatch
between the simulated year and the emission invent-
ory year. Such overestimation mainly occurs during
the summer, when the overall difference between
the model and the observations is significant (figure
S2(b)). Conversely, the model is negatively biased
at most sites measuring extremely high annual aver-
age concentrations (i.e. above 100 µg m−3). As clear
from figure S3, the most misrepresented areas are
the Sichuan province (e.g. Chengdu, which is highly
overestimated) and the westernmost cities of China
(e.g. Kashgar, which is underestimated). Despite the
relatively fine spatial resolution, limitations remain
in themodel’s ability to capture local scale PM2.5 con-
centrations, particularly over megacities where urban
measurements are highly impacted by local emissions
and sub-grid scale dispersion processes not resolved
by a CTM.

A more accurate PM2.5 field can be obtained by
integrating observations with the model results, as
described in section 2.3. According to the calibra-
tion/validation procedure described in the Supple-
mentary Information, the ‘Regression+ Kriging’ stat-
istical model is the most suitable to reproduce the
actual observations (figure 1 and table S3). Major
improvements to the WRF-Chem results are thus
achieved when integrated with observations, even
with a simple linear regression only (the mean bias
decreases from 10.2 µg m−3 to −2.50 µg m−3 and
Root Mean Square Error (RMSE, defined in the
Supplementary Information) from 24.87 µg m−3 to
15.62µgm−3). However, by also relaxing the assump-
tion of iid residuals (ε in equation 1) and model-
ing the spatial dependence via a kriging procedure,
we can accomplish almost zero bias with a threefold
decrease in RMSE compared to the WRF-Chem
model results. More complex statistical models were
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Figure 1. Statistical model validation results. Panels (a), (c) and (e) show the annual mean PM2.5 concentration observed at 323
validation sites against the modeled one, in the Regression+ Kriging, Regression only andWRF-Chem-only cases, respectively.
Panels (b), (d) and (f) present the annual average PM2.5 fields (µg m−3) reconstructed with the three above-mentioned methods,
overlaid with the observations on the same color scale.

also investigated but did not provide significantly
more accurate results despite the additional complex-
ity (Supplementary Information).

3.2. Premature mortality estimates
The long-term premature mortality burden during
2015–2018 is reported in table 1. Age- and disease-
specific premature mortality estimates indicate that
IHD and stroke are responsible for most premature
deaths attributable to PM2.5 (36.3% and 32.0% of
total PM2.5 related deaths, respectively), especially
among the young population (figure 2). More than
50% premature deaths due to LC, IHD, COPD and
stroke are attributable to PM2.5 exposure (i.e. RR⩾ 2,
using GEMMs) for adults less than 40 years old. This
percentage decreases with age, as other medical con-
ditions leading to those diseasesmay dominate for the
elderly population (figure 2). Given the rather short
timeframe considered in this work, the premature
mortality distribution by age groups remains almost

constant in time (figure S5), i.e. both the baseline
mortality and the total population distributions do
not vary considerably during the years of study.

Since on average our WRF-Chem simulation
overestimates PM2.5 concentrations, likely because of
the mismatch in the emission inventory year, among
other reasons, the use of model output only—as done
in prior studies with non-zero biases (e.g. Redding-
ton et al 2019)—would overestimate the total annual
prematuremortality burden by almost 140 000 deaths
in 2015 in our work (table 1), compared to the bias-
correction methodology (Regression+ Kriging).

According to the Regression + Kriging methodo-
logy, we estimate that in 2018 around 200 000 pre-
mature deaths were avoided compared to 2015. Sev-
eral factors have contributed to this trend. During
2015–2018, population growth (+1.4% during 2015–
2018) and ageing of the Chinese population (+1 year
of median age) have slightly offset the reduction in
premature deaths due to better air quality conditions,

5
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Table 1. Central estimate (mean) of long-term premature mortality associated with PM2.5 during 2015–2018 for Mainland China and
Hong Kong, using GEMMs.

2015 2016 2017 2018

Regression+ Kriging 1 656 500 1 579 600 1 527 100 1 424 800
Regression-only 1 641 400 1 552 800 1 520 800 1 438 600
WRF-Chem-only 1 785 800 — — —

Figure 2. (a) Age- and disease-specific total mortality estimates due to PM2.5 and (b) fraction of premature deaths attributable to
PM2.5 calculated using global exposure mortality models (GEMMs) for 2015.

Figure 3. Per capita difference between long-term annual premature mortality between 2018 and 2015, estimated with the
Regression+ Kriging methodology, using GEMMs. Negative values (blue color scale) indicate avoided deaths in 2018 with respect
to 2015, whereas positive values (red color scale) indicate additional premature deaths. Values should be interpreted as premature
deaths per grid cell per 100 000 inhabitants.

whereas the decrease in baseline mortality rates pos-
itively reinforced such trend. Without any variations
in the population age distribution and in baseline
mortality, 20 000 additional deaths would have been
avoided in 2018 compared to 2015, i.e. changes in

population structure outweighed the benefits deriv-
ing from improved health conditions.

The major improvements in terms of avoided
premature deaths are concentrated in major urban
areas (e.g. Beijing, Shanghai, Changchun, figure 3).
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Figure 4. Provincial-level subdivision of the long-term premature mortality burden due to PM2.5 in 2015 (green) and 2018 (red),
estimated with the Regression+ Kriging methodology, using GEMMs. Panel (a) refers to the total premature mortality, whereas
panel (b) shows the mortality per 100 000 inhabitants. Error bars indicate the 95% confidence interval of the 2018 estimates.
Vertical lines represent the mortality average among provinces.

Figure 5. Numerical probability density functions obtained by the Monte Carlo assessment (using GEMMs), considering only the
uncertainty in relative risk as done in previous literature (red) and adding the PM2.5 and baseline mortality layers of uncertainty
(blue), in 2018.
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Table 2. Central estimates and 95% confidence intervals (CI) for the long-term premature mortality burden due to PM2.5 during
2015–2018, for the four different cases presented in section 2.5, using GEMMs.

Central estimate (mean) 2015 2016 2017 2018

All cases 1 656 500 1 579 600 1 527 100 1 424 800

95% Confidence Interval 2015 2016 2017 2018

ERFs-only 1 359 300–1899 400 1 289 900–1804 400 1 257 700–1763 800 1 195 500–1680 100
ERFs+ BM 1 357 700–1911 900 1 284 500–1815 500 1 252 000–1774 500 1 187 900–1689 900
ERFs+ PM2.5 1 025 700–2307 500 1 009 300–2172 000 961 100–2165 600 928 700–2070 100
ERFs+ BM+ PM2.5 1 021 200–2322 100 1 002 300–2181 100 956 000–2174 200 924 420–2078 700

Figure 6. Comparison between the distributions of total annual premature mortality due to PM2.5 using GEMMs and IERs from
the Monte Carlo simulations. The green and red lines represents the mean of the distributions of GEMMs and IERs results,
respectively. The whiskers extend to the most extreme data point which is no more than two times the interquartile range from
the 25th and 75th percentiles (lower and upper bounds of the box, respectively).

Nonetheless, some other areas have experienced a
slight worsening of their mortality burden in the last
few years. The most notable examples are the urban
area of Xi’An and the westernmost cities of China,
coherently with the findings (in terms of air quality)
reported in Silver et al (2018). The spatial distribu-
tion of the difference in terms of total mortality val-
ues can be found in the Supplementary Information
(figure S6).

The provincial-level partitioning of the total mor-
tality burden indicates that the most populated
provinces of Shandong and Henan are character-
ized by the highest premature mortality due to PM2.5

(figure 4), although Shandong province achieved the
largest improvements between 2015 and 2018 (25 000
avoided premature deaths, −18%). When normaliz-
ing by mortality, the highest reduction was around
−28%, accomplished in the Jilin province in only four
years. The leading coal producing regions of Shanxi
and Shaanxi instead rank last for health improve-
ments, with almost a zero net change during the
study period, as also reported by Zou et al (2019).
On the other hand, major steel-related industrial
provinces (e.g. Hebei and Jiangsu, Reddington et al

2019) achieved important reductions of 13% and
10%, respectively. The northern, western and cent-
ral provinces where the residential sector is a major
contributor to poor air quality (Tao et al 2020) also
showed a considerable decrease (e.g. Bejing, 21%,
Sichuan, 11% and Hubei, 16%).

3.3. Uncertainty quantification
All the results presented above are related to the
estimated mean of the mortality burden. However,
such estimates are affected by three layers of uncer-
tainty, associated with the PM2.5 concentration fields,
the RR values and the baseline mortality. Here, we
identify the full probability distribution of the mor-
tality estimates for the four different cases presented
in section 2.5. Although all the numerical probab-
ility distributions are approximately Gaussian (even
if some skewness is present, figure 5), the stand-
ard deviations are remarkably different. This implies
that the traditional 95% confidence interval, com-
puted only with the ERFs uncertainty, is narrower of
about 700 000 premature deaths with respect to the
case where the uncertainty in PM2.5 fields, baseline
mortality and ERFs is considered (table 2 and figure
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S8). Because of a combination of the large sensit-
ivity of GEMMs at high PM2.5 concentrations and
the log-normality of PM2.5 concentrations, both the
lower bound (2.5% percentile) and the upper bound
(97.5% percentile) are significantly sensitive to the
addition of the PM2.5 layer of uncertainty. On the
other hand, the baseline mortality does not play a
major role in the premature mortality confidence
intervals as it is knownwith higher accuracy (the aver-
age coefficient of variation of age- and disease-specific
baseline mortality rates is approximately 3%).

Finally, figure 6 shows the comparison between
the mortality estimates using GEMMs and the tradi-
tional IERs. The discrepancy between the two meth-
ods is significant, with the upper bound of IERs mor-
tality estimates being approximately the mean of the
GEMMs mortality distribution. Because the GEMMs
relationship between PM2.5 and mortality is much
stronger at high PM2.5 concentrations, the difference
is more pronounced in the regions where PM2.5 con-
centrations are particularly large (e.g. urban areas).

4. Discussion and conclusions

In this study, we quantify the long-term health bur-
den associated with PM2.5 exposure in China dur-
ing 2015–2018. To our knowledge, this is the one of
the first studies that integrates ground-based obser-
vations and high-resolution model output to accur-
ately estimate the trend of nationwide premature
mortality due to PM2.5 for China. Our approach
improves fidelity of premature mortality estimates by
accounting and correcting for potential model biases
in representing PM2.5 concentrations. In addition, we
present a novel methodology both to account for the
uncertainty in CTM results (Solazzo and Galmarini
2016) and to properly quantify the confidence inter-
vals of the premature mortality estimates. Despite
many attempts to validate and improve CTM res-
ults (Vautard et al 2007), inaccuracies in CTM out-
put systematically occur due to improper spatial res-
olution (Crippa et al 2017), lack of accurate input
data (e.g. emissions estimates (Zheng et al 2017a)),
uncertain initial and boundary conditions (Georgiou
et al 2018), and incomplete understanding of some
physical-chemical processes (e.g. formation of sec-
ondary organic aerosol (Giani et al 2019)). These
issues can lead to potentially large biases in mortality
estimates and thus we stress the importance of data
assimilation techniques in calculating the mortality
burden.

The statistical methodology presented in this
work also allows for an improved characterization
of the confidence intervals of mortality estimates,
by considering and propagating multiple sources of
uncertainty. We show that most of the uncertainty
in mortality estimates is associated with the uncer-
tainty in PM2.5 fields and ERFs parameters, whereas
baseline mortality is known with higher accuracy and

therefore entails a minor impact on mortality confid-
ence intervals. Hence, we argue that (i) uncertainty
related to PM2.5 estimate should be considered in
mortality assessments, (ii) improving CTM results
can considerably narrow the confidence intervals in
mortality estimates and (iii) that some of the variab-
ility inmortality estimates presented in previous liter-
ature is likely coming from the neglected PM2.5 uncer-
tainty.

Results from our analyses suggest that 1 656 500
people prematurely died in 2015 due to PM2.5 expos-
ure, although a steady decline is estimated during
2015–2018 (~200 000 avoided deaths in 2018 with
respect to 2015 over the entire China, which corres-
ponds to an estimated saved monetary value of 195
billion US dollars). Using GEMMs instead of IERs
leads to a significantly larger premature mortality
burden compared to previous estimates (which usu-
ally range between 900 000 and 1 300 000, Redding-
ton et al (2019)), as also highlighted by other stud-
ies, e.g. Burnett et al (2018) and Xue et al (2019b).
The uncertainty related to the total premature deaths
attributable to PM2.5 remains vast, especially when
taking into account different exposure response func-
tions as well as the uncertainty related to PM2.5 levels.
If we consider both the results obtainedwith IERs and
GEMMs together (i.e. assigning an uninformative
prior probability of 50% to each of the two models),
the range of our estimate (95% confidence interval)
would be 574 000–2078 700 in 2018, which is much
wider than previously reported. Although GEMMs
are likely to be more representative of the health
response to ambient PM2.5 concentrations than IERs,
as the former only include cohort studies of outdoor
air pollution, there is no clear evidence of GEMMs
providing more reliable results than IERs yet (Xue
et al 2019b).More research and epidemiological stud-
ies are thus needed to constrain and evaluate the dif-
ferent exposure response functions as well as to nar-
row the current confidence intervals. Nonetheless, the
trend of avoided deaths in recent years (~200 000
avoided deaths in 2018 compared to 2015, or 50 000
avoided deaths per year) is coherent with recent find-
ings (42 800 avoided deaths per year, between 2013
and 2017, Zou et al (2019)), where estimates were
derived from the use of a corrected version of the IERs
to take into account exposure-related human activity
patterns. Despite a considerably different total mor-
tality burden, a similar trend in recent years was also
found also inDing et al (2019) (57 400 avoided deaths
per year, between 2013 and 2017), which however
relied on CTM simulations only, without any obser-
vations. The similarity of these three results, obtained
with three independent methodologies, bolsters the
robustness of the estimated trends.

Multi-year assessments of premature mortal-
ity usually require (i) large computational power
to run expensive multi-year simulations and (ii)
accurate and up-to-date emission inventories at fine
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resolution. Whilst computational power has been
increasingly more accessible in recent years, CTM-
ready official emission inventories are often avail-
able for discontinuous years and released belatedly.
The main advantage of our approach is that it partly
compensates the need for large computational power
(thus allowing for very high resolution in space) and
it does not require yearly varying emission inventor-
ies which generally require considerable processing
before utilization as input to CTMs. Moreover, the
presented methodology allows the calculation of the
uncertainty in PM2.5 spatio-temporal fields and its
propagation to the mortality estimates, which over-
comes the limitations of deterministic CTM out-
put. However, we acknowledge that our method-
ology should be used for limited and consecutive
years (e.g. 4 years, in our work), to ensure that
the base case simulation provides reasonable res-
ults for different meteorological and emission condi-
tions. This procedure can thus be intended to fill the
gaps for those years where official emission invent-
ories are not available, provided that observations of
PM2.5 are accessible. Future investigations should be
devoted to the refinement of the presented method-
ology, for example using non-parametric approaches
to estimate the PM2.5 field and uncertainty (e.g. with
machine learning techniques (Bai et al 2019, Xue
et al 2019a)). Population uncertainty, estimated with
different global products (e.g. the Gridded Popula-
tion of the World, v4), can also be included in the
Monte Carlo assessment, even though we anticip-
ate that its impact would be of the same order of
the baseline mortality. Furthermore, this methodo-
logy could prove useful to quantify mortality trends
in highly populated regions where the health impacts
of air quality have been only partially quantified.

Although we find substantial reductions in the
premature mortality rates associated with PM2.5 dur-
ing 2015–2018, and this trend has been reported
since 2013 (Zheng et al 2017b), the health burden
is still vast and multiple challenges await China in
the near future. Climate change is expected to lead
to more intense and frequent stagnation events and
heat waves, which can exacerbate the PM2.5 related
premature mortality (Hong et al 2019). Even though
emission reduction policies might be strengthened
in the near future (Peng et al 2017), the premature
mortality burden could still be negatively affected by
the predicted population growth and ageing (Madan-
iyazi et al 2015, Cohen et al 2017), i.e. a slight reduc-
tion in PM2.5 concentration could be more than
compensated by an increase in the exposed popula-
tion. Furthermore, socioeconomic factors like eco-
nomic growth, industrialization and urbanization
will strongly influence PM2.5 concentrations (Li et al
2016a). As the economic growth is a vital goal in
China’s 13th five-year plan (Aglietta and Bai 2016),
the government is urged to find a way to decouple
the effects of economic growth on PM2.5 pollution.

In light of our findings and other recent studies (Sil-
ver et al 2018), we conclude that China is headed in
the right direction towards the decoupling of these
two vital aspects, even though more stringent emis-
sion reduction policies will be needed to cope with all
the challenges highlighted above.
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