

Supplementary Material 4

Statistical analysis of the evapotranspiration (ET) at the end of the experiment (day 56)

Assumption of normality distribution of data

The normality of ET_{d56} data has been ascertained by the Shapiro-Wilk test, being Sig. >0.05.

Shapiro-Wilk				
Statistic	df	Sig.		
0.987	149	0.178		

Assumption of equality of variance

The equality of variances of ET_{d56} data has been verified by the Levene test, being Sig. >0.05.

Parametric Levene test							
with "genot	th "genotype" as factor			with "treatment" as factor			
Levene statistic	df1	df2	Sig.	Levene statistic	df1	df2	Sig.
1.383	4	144	0.243	1.237	4	144	0.298

Two-way ANOVA

The two-way ANOVA has been used to compare the mean differences between groups, with the objective to evidence if there is any interaction between the ET_{d56} (dependent variable) and the genotype and the treatment (independent variables). The analysis performed followed the suggestions from Kim (2014)¹. Each of the two fixed factors presented 5 levels (5 genotypes and 5 treatments). This test is considered very robust, particularly thanks to the large sample size; moreover, the significance level was reduced to 0.001, thus increasing the confidence of the results (99.9%).

The results of the two-way ANOVA are reported in the Table 5 of the manuscript. Briefly, there were significant effects on the ET parameter due to the "genotype" and to the "treatment" (p<0.001), while the interaction term "genotype*treatment" was not statistically significant (p>0.05).

The table below reports the descriptive statistics results (mean \pm SD) from the interaction model and the post hoc multiple comparisons (see next page).

¹ Kim HY (2014) Statistical notes for clinical researchers: two-way analysis of variance (ANOVA)-exploring possible interaction between factors. Restor Dent Endod 39:143-147. <u>https://doi.org/10.5395/rde.2014.39.2.143</u>

	Treatment					
Genotype	C-	B1	B1D	B2	B2D	
Duilio	138.50 ± 27.887 Aa	$148.83\pm26.480~\textbf{Aab}$	154.08 ± 24.899 Aa	95,58 ± 23.604 Ac	103.50 ± 18.868 Ab	
Grecale	110.58 ± 21.113 Ca	116.83 ± 17.105 Cab	111.75 ± 8.993 Ca	64.33 ± 5.750 Cc	$91.50\pm18.898~\textbf{Cb}$	
Iride	$119.00 \pm 20.137 \text{ ABCa}$	117.67 ± 13.644 ABCab	137.17 ± 6.728 ABCa	80.33 ± 13.400 ABCc	111.42 ± 12.866 ABCb	
Marco Aurelio	127.00 ± 9.560 BCa	113.00 ± 14.680 BCab	117.58 ± 19.923 BCa	96.08 ± 13.313 BCc	96.08 ± 13.313 BCb	
Saragolla	107.25 ± 16.634 ABa	136.08 ± 32.302 ABab	$148.58\pm26.828~\textbf{ABa}$	90.75 ± 18,796 ABc	110.67 ± 13.692 ABb	

Abbreviations: soil substrate (SS) lacking any biochar treatment (C-); biochar from wood chips (B1); B1 incubated with digestate (B1D); biochar from wheat straw (B2); B2 incubated with digestate (B2D).

* Different bold letters indicate significant difference according to the R-E-G-W-Q test at p<0.001 level, with black uppercase letters referring to the "genotype" subset and the blue lowercase ones to the "treatment" subset.

R-E-G-W-Q has been used as *post-hoc* test, because it offers a good control of type 1 errors in presence of a similar sample size as in the current data set. The homogeneous subsets resulting for the dependent variable ET_{d56} are reported below, separately for "genotype" and "treatment".

4

ET_{d56} as dependent variable and "genotype" as independent variable:

GENOTYPE	N	Subset for $alpha = 0.001$			
		А	В	С	
Grecale	30			99.26	
Marco Aurelio	30		105.48	105.48	
Iride	30	113.12	113.12	113.12	
Saragolla	30	118.67	118.67		
Duilio	30	128.10			
Sig.		0.011	0.033	0.026	

ET_{d56} as dependent variable and "treatment" as independent variable:

TREATMENT	N	Subset for alpha = 0.001			
		а	b	с	
B2	30			80.95	
B2D	30		103.02		
B1	30	120.47	120.47		
C-	30	126.48			
B1D	30	133.83			
Sig.		0.030	0.001	1.000	