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Abstract. This work provides a general description of the self-consistent energetic particle
phase space transport in burning plasmas, based on nonlinear gyrokinetic theory. The self
consistency is ensured by the evolution equations of the Alfvénic fluctuations by means of
nonlinear radial envelope evolution equations, while energetic particle fluxes in the phase space
are explicitly constructed from long-lived phase space zonal structures, which are undamped by
collisionless processes. As a result, this work provides a viable route to computing fluctuation
induced energetic particle transport on long time scales in realistic tokamak plasmas.

1. Introduction

The role of energetic particles (EPs) in fusion plasmas is unique as they could act as mediators of
cross-scale couplings [1, 2]. Energetic particle driven shear Alfvén waves (SAWs), on one hand,
could provide a nonlinear feedback onto the macro-scale system via the interplay of plasma
equilibrium and fusion reactivity profiles. Meanwhile, EP-driven instabilities could also excite
singular radial mode structures at SAW continuum resonances, which, by mode conversion,
yield microscopic fluctuations that may propagate and be absorbed elsewhere, inducing nonlocal
behaviors that require a global analysis. Energetic particle transport must be described in phase
space because of the underlying kinetic nature of wave-particle interactions and fluctuation
excitations. The proper structures to describe such transport processes are phase space zonal
structures (PSZS) [3]. Energetic particles, furthermore, may linearly and nonlinearly excite
zonal field structures (ZFS), acting, thereby, as generators of nonlinear equilibria, or zonal states
(ZS) that generally evolve on the same time scale of the underlying fluctuations. These issues
are presented within a general theoretical framework. In particular, we present the nonlinear
envelope equations (Sec. 2) that are needed to solve for the self-consistent evolution of the
SAW fluctuation spectrum driven by EPs and the PSZS transport equations (Sec. 3), which
determine the renormalized response of EPs including fluctuation induced transport [4]. The
present approach can be extended from tokamak to more general 3D magnetic equilibria, such
as stellarators, and work is in progress along these lines [5]. For the sake of conciseness and
clarity, this work is limited to axisymmetric tokamaks.
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2. Nonlinear envelope equations

We assume low-β tokamak plasmas with good separation of SAW and compressional Alfvén
wave frequencies1. Thus, the parallel (to the equilibrium magnetic field B0) magnetic field
fluctuation, δB‖, is obtained from the perpendicular (to B0) pressure balance [1]

∇⊥

(

B0δB‖ + 4πδP⊥

)

≃ 0 , (1)

where, assuming a generally anisotropic plasma response, δP⊥ represents the perpendicular
pressure perturbation. It is of crucial importance that δB‖ is obtained from Eq. (1) and not
assumed to vanish [1]. Here and in the following, unless otherwise specified, fluctuations are
intended to be “symmetry breaking”; i.e., characterized by finite toroidal mode number n 6= 0
in the considered axisymmetric tokamak equilibrium. Having solved for δB‖ explicitly, the drift
Alfvén wave (DAW) [1] fluctuation spectrum is entirely described by scalar potential, δφ, and
parallel vector potential, δA‖. For convenience, we choose δψ as independent field variable
instead of δA‖, which is defined as ∇‖δψ ≡ −(1/c)∂tδA‖. In this way, vanishing of the parallel
electric field for k‖ 6= 0 reads δφ = δψ, with k the wave vector and k‖ its parallel component.
Coupled nonlinear evolution equations for δφ and δψ are given by the gyrokinetic quasineutrality

∑

〈

e2

m

∂F̄0

∂E

〉

v

δφ+∇ ·
∑

〈

e2

m

2µ

Ω2

∂F̄0

∂µ

(

J2
0 − 1

λ2

)〉

v

∇⊥δφ+
∑

〈eJ0(λ)δg〉v = 0 . (2)

and gyrokinetic vorticity equation

B0

(

∇‖ +
δB⊥

B0
·∇

)(

δJ‖

B0

)

−∇ ·
∑

〈

e2

m

2µ

Ω2

(

B0
∂F̄0

∂E
+
∂F̄0

∂µ

)(

J2
0 − 1

λ2

)〉

v

∇⊥
∂

∂t
δφ

+
∑

ecb0 ×∇

〈

2µ

Ω2
F̄0

(

J2
0 − 1

λ2

)〉

v

·∇∇2
⊥δφ+

c

B0
b0 × κ ·∇

∑

〈

m
(

µB0 + v2‖

)

J0δg
〉

v

+δB⊥ ·∇

(

J‖0

B0

)

+
∑

e

〈

J0

[

c

B0
b0 ×∇ (J0δφ) ·∇δg

]

−
c

B0
b0 ×∇δφ ·∇ (J0δg)

〉

v

+
c

B0
b0 ×∇δφ ·∇

[

∇ ·
∑

〈

e2

m

2µ

Ω2

∂F̄0

∂µ

(

1− J2
0

λ2

)〉

v

∇⊥δφ

]

= 0 . (3)

Equations (2) and (3) are given without derivation. Interested readers are referred to the
original works for all details [1, 6, 7], including discussions of underlying assumptions, validity
limits and possible further extensions. In this context, we only emphasize that Eqs. (2) and (3)
contain sufficiently accurate physics descriptions derived from first principles to be applicable
in most cases of practical interest, including ITER. Here, δB⊥ =

(

∇× b0δA‖

)

⊥
, b0 = B0/B0,

κ = b0 ·∇b0, J‖0 is the equilibrium parallel current density and

δJ‖ ≃ −
c

4π

(

∇2
⊥ − κ · ∇⊥

)

δA‖ (4)

is the parallel current density fluctuation. Furthermore, summation is on particle species
with electric charge e, mass m, cyclotron frequency Ω = eB0/(mc) and “renormalized”
(nonlinear/evolving) equilibrium distribution function F̄0(E , µ, Pφ), with E = v2/2, µ ≃ v2⊥/2B0

the leading order expression of the magnetic moment and Pφ ≃ (e/c)
(

F (ψ)(v‖/Ω)− ψ
)

the corresponding leading order toroidal canonical angular momentum, having adopted the
B0 = F (ψ)∇ϕ + ∇ψ × ∇θ representation of the tokamak equilibrium magnetic field, with
(ψ, θ, ϕ) the toroidal flux coordinates. Thus, F̄0 as a function of invariants of motion (given with

1 Here, using standard notation, β is the ratio of kinetic to magnetic energy density.
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the desired accuracy) represents the PSZS that will be discussed below in Sec. 3. Meanwhile,
J0 is the zeroth Bessel function of argument λ, λ2 = 2µB0k

2
⊥/Ω

2 and δg is the nonadiabatic
particle response that satisfies the nonlinear gyrokinetc equation [8, 9] (cf. Sec. 3).

Given the strong equilibrium magnetic field, δφ and δψ are characterized by |k‖| ≪ |k⊥|.
These field aligned structures, which become nearly filamentary at high toroidal mode number
n [1, 2], can be well represented as [1, 2, 10]

[

δφ(r, θ, ζ)
δψ(r, θ, ζ)

]

= 2π
∑

n,ℓ∈Z

einζ−inq(ψ)(θ−2πℓ)

[

δφ̂n(r, θ − 2πℓ)

δψ̂n(r, θ − 2πℓ)

]

, (5)

where, for brevity, we have omitted time dependences, q(ψ) is the safety factor, and we have
introduced the field aligned toroidal flux coordinates (r, θ, ζ) that can always be constructed
from (ψ, θ, ϕ) [11]. Equation (5) is always valid and reduces to the well known ballooning
transformation [12, 13, 14] for high-n [10]. Although generally possible, using Eq. (5) does not
introduce significant advantages at low-n. At moderate and/or high-n, instead, thanks to Eq.
(5) representation, it is possible to treat Eqs. (2) and (3) with the formalism of wave equations
in slowly evolving weakly nonuniform media [1, 2, 6, 7, 15, 16, 17] and introduce radial envelope
An(r, t), eikonal Sn(r, t) and polarization vector ên = [ên1(r, t), ên2(r, t)]

T as2

(

eδψ̂n(r, ϑ; t)/T0i
eδφ̂‖n(r, ϑ; t)/T0i

)

≡ An(r, t)e
iSn(r,t)

(

e1(r, t)y1(r, ϑ; t)
e2(r, t)y2(r, ϑ; t)

)

. (6)

Here, we have explicitly indicated time dependences, T0i is the thermal ion (nonlinear)
equilibrium temperature, normalizations are chosen such as ê

+
n · ên = 1, with ê

+
n =

[ê∗n1(r, t), ê
∗
n2(r, t)]; and δφ̂‖n ≡ δφ̂n − δψ̂n has been introduced such that ên = (1, 0)T and

ên = (0, 1)T represent, respectively, pure Alfvénic and acoustic polarizations [18, 19, 20, 21].
Meanwhile, y1,2(r, ϑ; t) represent parallel mode structures in the extended ballooning coordinate
ϑ [6, 7], for which we assume

∫ ∞

−∞
|y1,2(r, ϑ; t)|

2 dϑ = 1 . (7)

Using this representation, and solving for the parallel mode structures, the solubility condition
for Eqs. (2) and (3) can be cast as [6, 7]

ê
+
n ·D (r, t, knr , ωn) ·An(r, t)e

iSn(r,t) = ê
+
n · F (r, t) , (8)

with An(r, t) ≡ ênAn(r, t), knr(r, t) = ∂rSn(r, t) and ωn = −∂tSn(r, t). Furthermore, F (r, t)
on the right hand side symbolically denotes all nonlinear interactions and, possibly, external
forcing. General expressions of F (r, t) can be obtained by inspection of Eqs. (2) and (3) and
their lengthy form will be given elsewhere.

This structure of Eqs. (2) and (3) is particularly useful given the typical time scale ordering
of DAW excitation by EPs in burning plasmas, that is |γLn| ∼ τ−1

NLn ≪ |ωn| [1], where γLn is
the growth rate of the fluctuations with toroidal mode number n and τNLn the corresponding
characteristic nonlinear time scale. In fact, it is possible to argue that the time scale for
the parallel mode structures to form, ∼ |ωn|

−1, is too short for y1,2(r, ϑ; t) to be modified by
nonlinear interactions. Thus, y1,2(r, ϑ; t) can be effectively approximated by the corresponding
linear parallel mode structures, yL1,2(r, ϑ; t), which are computed once the reference (nonlinear)

2 Here, [a, b]T is the standard notation of the transpose of the row vector [a, b]; i.e., the corresponding column
vector with the same components.
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equilibrium is given. Adopting the standard asymptotic expansion approach, the leading order
local dispersion relation

D0
Rn (r, t, knr, ωn) ≡ ê

+
n ·D0

R · ên = 0 (9)

can be solved for ωn = Ω̄n(knr, r, t). Furthermore, D1
Rn ≡ ê

+
n · D1

R · ên is the first order
contribution to the real dispersion function in the asymptotic series, while D1

An ≡ ê
+
n ·D1

A · ên
provides the leading order anti-Hermitian dispersion function, consistent with the |γLn| ∼
τ−1
NLn ≪ |ωn| ordering. Meanwhile, Eq. (8) can be solved by asymptotic perturbation expansion,
which yields [1, 2, 6, 7]

∂

∂t

(

∂D0
Rn

∂ωn
A2
n

)

−
∂

∂r

(

∂D0
Rn

∂knr
A2
n

)

+ 2D1
AnA

2
n − 2iD1

RnA
2
n

+iAn

(

∂2D0
Rn

∂k2nr
+ 2

∂ê+n
∂knr

·D0
Rn ·

∂ên
∂knr

)

∂2An
∂r2

= −2ie−iSnAnê
+
n · F

−

(

ê
+
n ·

d

dt
ên −

d

dt
ê
+
n · ên

)

∂D0
Rn

∂ωn
A2
n +

(

∂ê+n
∂ωn

·D0
Rn ·

∂ên
∂t

−
∂ê+n
∂t

·D0
Rn ·

∂ên
∂ωn

)

A2
n

−

(

∂ê+n
∂knr

·D0
Rn ·

∂ên
∂r

−
∂ê+n
∂r

·D0
Rn ·

∂ên
∂knr

)

A2
n . (10)

The total time derivatives, where they appear, are defined as d/dt = ∂t + vgn∂r, with the group
velocity vgn = −(∂D0

Rn/∂knr)/(∂D
0
Rn/∂ωn). Note that, by dropping the ∼ ∂2rAn term, Eq. (10)

is the well-known propagation equation for wave packet amplitude and phase that can be used
to derive the corresponding wave kinetic equation [15, 16, 17]. The presence of the ∼ ∂2rAn
term makes Eq. (10) a nonlinear Schrödinger like equation (NLSE-like), which is of crucial
importance for proper analysis of structure formation in strongly magnetized toroidal plasmas,
where wave packets can be focused/defocused and back scattered by both nonlinearities as well
as by radial nonuniformities [1, 2, 6, 7]. In fact, the peculiar NLSE-like structure of Eq. (10),
different from the standard wave kinetic equation that is typically adopted in literature, is of
fundamental importance not only in the description of EP induced avalanches, such as in the
case of energetic particle modes (EPM) [3, 22], but also for the interaction of zonal fields and
drift wave turbulence [23, 24, 25, 26, 27].

The NLSE-like Eq. (10) accounts for the effects of nonlinearities only via the nonlinear
distortion of the radial envelope functions An’s, which are coupled together because of the
explicitly nonlinear term ∼ ê

+
n ·F on the right hand side. Note that the non-trivial formal effort

to numerically, or – where possible – analytically, compute the elements of this equation [5] is
well payed back by the reduction in dimensionality and by the fact that the various elements
can be obtained by means of the linearized Eqs. (2) and (3). Even the explicit nonlinear term
∼ ê

+
n ·F , although formally complicated, can be calculated by averaging along the linear parallel

mode structures [5]. However, we note that the nonlinear envelope functions may be completely
different from those of linear eigenmodes, since nonlinearities enter on the same footing as
the radial propagation of wave packets due to finite radial group velocity in the time evolving
nonuniform plasma equilibrium. The generality of this approach is discussed in Refs. [1, 2, 6, 7]
and goes well beyond the applicability of the wave kinetic equation, mentioned above, and of the
radially local description usually adopted in flux-tube or quasilinear approaches. For this reason,
this methodology is well suited to be extended to three-dimensional nonuniform plasmas, such
as stellarators [14]. This approach, in particular, allows to account for flux-tubes not covering
the whole flux surface in stellarator equilibria, which results in the dependence of the envelope
functions on both Clebsch potentials [14]. Thus, it opens a route to systematic calculation of
fluctuation induced fluxes in three-dimensional plasma equilibria. Due to the nontrivial twists
that this extension of the present approach implies, it will be discussed elsewhere.
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When adopted as nonlinear radial envelope evolution equation for investigating energetic
particle transport due to DAW in tokamak plasmas, Eq. (10) can benefit from the theoretical
framework of the general fishbone-like dispersion relation (GFLDR) [1, 6, 7], which gives

D0
Rn (r, knr, ωn) +D1

Rn (r, knr, ωn) + iD1
An (r, knr, ωn)

= δW̄L
f (r, knr, ωn) + δW̄L

k (r, knr, ωn)− iΛL(r, ωn) , (11)

and
e−iSn ê

+
n · F /An = iΛNL − δW̄NL

f − δW̄NL
k + e−iSn ê

+
n · Fext/An . (12)

Equations (11) and (12) account for linear (superscript L) and nonlinear (superscriptNL) effects,
respectively, as well as external forcing (subscript ext). Here, consistent with the GFLDR theory,
Λ describes the generalized inertia due to the e.m. field behaviors on short length scales, while
δW̄f and δW̄k account for “fluid” and “kinetic” potential energy fluctuations due to meso- and
macro-scale responses [1, 2, 3, 6, 7]. From Eq. (12), in general, we can write [1]

e−iSn ê
+
n · (F − Fext) = (Cn,0 + C0,n) ◦ An(r, t)Az(r, t)

+

n′,n′′ 6=n
∑

n′+n′′=n

Cn′,n′′ ◦ An′(r, t)An′′ (r, t)
(13)

where “Cn′,n′′ imply nonlocal interactions in the n toroidal mode number space and whose
composition with (action on) An(r, t) and/or Az(r, t) is denoted by ◦”[1]. The explicit form of
Cn′,n′′ can be deduced from the expressions of Λ, δW̄f and δW̄k given in Refs. [1, 2, 3, 6, 7].
Meanwhile, An(r, t) and Az(r, t) denote, respectively, the radial envelopes of symmetry breaking
fluctuations and ZFS given by n = 0 e.m. fields; that is, δφz and δA‖z , noting that δB‖z can be
explicitly solved for [28, 29] analogously to Eq. (1). The presence of finite ZFS induces, more
generally, zonal structures, such as current density, temperature, etc. perturbations, which can
be consistently computed from the phase space particle responses given in Sec. 3. But while
δφz can be obtained from the n = 0 component of Eq. (2), δA‖z is obtained from [1]

∂

∂t
δA‖z =

(

c

B0
b0 ×∇δA‖ · ∇δψ

)

z

. (14)

Equation (13) accounts for three wave couplings via the ∼ Cn′,n′′ ◦ An′(r, t)An′′(r, t) term, as
well as for both three as well as four wave couplings (due to zero frequency ZFS) via the
(Cn,0 + C0,n) ◦ An(r, t)Az(r, t) term. This latter term also accounts for rapid distortions away
from the nonlinear equilibrium that are not accounted for by the evolution of PSZS (cf. Sec. 3).
In summary, Eqs. (2), (3) and (14) fully characterize the DAW fluctuation and ZFS spectrum
evolution, with the NLSE-like Eq. (10) providing the nonlinear radial envelope evolution
equations that account for nonlocal behaviors, structure formation, avalanches etc.[1, 2, 3].
This, of course, given PSZS, F̄0, and nonadiabatic particle responses, δg, which are discussed in
the following section.

3. Phase space zonal structures and nonlinear equilibrium

The investigation of fluctuation induced transport in burning fusion plasmas on long time scales,
∼ O(k3⊥L

3/λ3)Ω−1, with L the macroscopic system size, poses challenging questions (cf. Ref.
[30] for a recent review) especially for the description of resonant EP transport in phase space
[1, 2, 3]. In fact, resonant behaviors and transport of nearly collisionless EPs generate structures
in the phase space that can significantly deviate from equilibrium in the absence of fluctuations
and, thus, influence transport on long time scales [4, 31]. These PSZS are characterized by
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being undamped by collisionless processes and do not evolve in time in the absence of symmetry
breaking fluctuations and sources/collisions [1, 3]. This property characterizes PSZS as functions
of the invariants of motion in the considered reference “equilibrium”, which may be evolving
in time [4]. In order to explore this more in detail, let us consider the nonlinear gyrokinetic
equation in conservative form [8, 9, 30]

∂t (DF ) + ∂X ·
(

DẊF
)

+ ∂E

(

DδĖF
)

= Cg + S. (15)

where D = B∗
‖/v‖ is the velocity space Jacobian, B∗

‖ = B0 + (v‖/Ω)B0 · ∇ × b0, F is the

gyrocenter particle distribution function, X are gyrocenter coordinates, and we have noted
that E and µ are constants of motion. Meanwhile, on the right hand side, Cg and S denote,
respectively, gyrocenter collision operator [32] and source term. When solved ab initio, Eq.
(15) usually assumes an initial F0(E , µ, Pφ) that is then let evolve in time under the effect of
symmetry breaking fluctuations and ZFS. Focusing on the n = 0 zonal particle response, Fz, and
introducing the drift/banana center pull-back operator e−iQz , with Qz = F (ψ)(v‖/Ω)kz/(dψ/dr)

at leading order3, with kz the ZFS radial wave-number,

Fz ≡ F̄0 + δFz ≡ F̄0 + e−iQzδFBz , (16)

with δFBz the corresponding drift/banana center particle response. Note that, in this equation,
δFz is the deviation of the zonal particle response from the PSZS F̄0 that will be defined
below, and that is a function of the invariants of motion but also depends explicitly on time.
By definition, the initial condition on F̄0 is F̄0(E , µ, Pφ, t = 0) = F0(E , µ, Pφ). Meanwhile,

introducing the bounce averaging (...) ≡ τ−1
b

∮

(...)dθ/θ̇, with τb =
∮

dθ/θ̇ the transit/bounce
time it takes to a particle to complete a poloidally closed orbit, it follows from the definitions
above that

Fz ≡ F̄0 + e−iQz

(

δFBz
∣

∣

F
+ δF̃Bz

)

= F̄0 + e−iQz

(

eiQzδFz

∣

∣

∣

F
+ δF̃Bz

)

, (17)

where δF̃Bz ≡ δFBz − δFBz has zero bounce average, and the subscript F denotes the
“fast” spatiotemporal micro-scales, which we intend to ad hoc separate from the the “slow”
spatiotemporal meso- and macro-scales dependences denoted by the subscript S [4, 28, 29].

Note that, in Eq. (17), eiQzδFz is the orbit average of δFz along the integrable particle orbit in
the considered magnetic (nonlinearly evolving) “equilibrium”. Thus, Eq. (17) postulates that
all the slow orbit averaged zonal particle response is included in the PSZS F̄0, and that the
residual part can only vary on “fast” spatiotemporal micro-scales or have zero orbit average. It
is possible to show that the function

Gz = e−iQzGBz ≡ Fz −
e

m
〈δLg〉z

∂

∂E

∣

∣

∣

∣

ψ̄

F̄0 +
F (ψ)

B0

〈

δA‖g

〉

z

∂

∂ψ̄
F̄0 (18)

with angular brackets denoting gyroaveraging, 〈δLg〉 ≡ J0(λ)
(

δφ− v‖δA‖/c
)

+(2mµ/eλ)J1(λ)δB‖,
〈

δA‖g

〉

≡ J0(λ)δA‖, and ψ̄ ≡ −(c/e)Pφ, satisfies the following evolution equation [28, 29]:

∂tGBz = −eiQz

e

m
∂t

[

〈δLg〉z
∂

∂E

∣

∣

∣

∣

ψ̄

F̄0

]

+ eiQz

F (ψ)

B0

〈

δA‖g

〉

z

∂

∂ψ̄
∂tF̄0 + eiQz [Cg + S]

∣

∣

∣

z

−
1

τb

∂

∂ψ

[

τbeiQzδψ̇zδFz

]

−
1

τb

∂

∂E

[

τbeiQzδĖzδFz

]

−
1

τb

∂

∂ψ

[

τbeiQzδψ̇δF
]

z
−

1

τb

∂

∂E

[

τbeiQzδĖδF
]

z
, (19)

3 Note, here, that F (ψ) is the expression entering the representation of B0, not to be confused with the gyrocenter
particle distribution function.
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where the last two terms on the right hand side are due to symmetry breaking fluctuations only.
Meanwhile, extending the definition in Eq. (18) to symmetry breaking fluctuations [1, 8, 9],
and connecting the nonadiabatic particle response δg, introduced in Eqs. (2) and (3), to the
perturbed gyrocenter particle distribution function, δF , we can write

δg ≡ δF −
e

m
〈δLg〉

∂

∂E

∣

∣

∣

∣

ψ̄

F̄0 +
F (ψ)

B0

〈

δA‖g

〉 ∂

∂ψ̄
F̄0 , (20)

which evolves in time according to the following nonlinear gyrokinetic equation

(

∂t + Ẋ0 ·∇
)

δg = −
e

m
∂t

[

〈δLg〉
∂

∂E

∣

∣

∣

∣

ψ̄

F̄0

]

+
F (ψ)

B0

〈

δA‖g

〉 ∂

∂ψ̄
∂tF̄0 (21)

−c∂ζ 〈δLg〉
∂

∂ψ̄
F̄0 + [Cg + S]−

1

JD

∂

∂θ

[

JDδθ̇δFz

]

−
1

JD

∂

∂ψ

[

JDδψ̇δFz

]

−
1

JD

∂

∂E

[

JDδĖδFz

]

−
1

JD

∂

∂θ

[

JDδθ̇zδF
]

−
1

JD

∂

∂ψ

[

JDδψ̇zδF
]

−
1

JD

∂

∂E

[

JDδĖzδF
]

−
1

JD

∂

∂θ

[

JDδθ̇δF
]

−
1

JD

∂

∂ψ

[

JDδψ̇δF
]

−
1

JD

∂

∂E

[

JDδĖδF
]

,

where Ẋ0 denotes the gyrocenter motion in the equilibrium magnetic configuration, we have
introduced the phase space variables (ψ, θ, ζ, E , µ, α), α is the gyrophase, and J denotes the
jacobian of the straight magnetic field line toroidal flux coordinates (ψ, θ, ζ). Here, again, as in
Eq. (19), the last three terms on the right hand side are due to symmetry breaking fluctuations
only.

Equations (18) to (21) are given here without derivation, since all details and necessary in
depth discussions are provided in Refs. [28, 29]. In particular, Eqs. (19) and (21) are obtained
by formal manipulation of Eq. (15). Thus, they are an application of the nonlinear gyrokinetic
theory and they might seem just a more convoluted way of reformulating it [4]. In order to
appreciate the insights that this formal manipulation may provide, let’s focus on Eq. (21) and
note that F̄0 appears only in linear terms on the right had side. Recall also that F̄0 is a function
of the invariants of motion in the reference magnetic equilibrium and depends explicitly on time.
Furthermore, let us remind that quasineutrality equation can be obtained directly from Eq. (20)
by application of equilibrium and perturbed charge neutrality, while the gyrokinetic vorticity
equation is obtained by taking the moment of Eq. (21) [1, 6, 7]. Thus, we are lead to the
conclusion that F̄0 is the proper choice for the definition of PSZS, once it is demonstrated that
they are undamped by collisionless processes and that they evolve in time only due to nonlinear
processes and/or sources and collisions [1, 2]. From Eq. (18), we can write

eiQz F̄0 = GBz − eiQzδFz

∣

∣

∣

F
+

e

m
eiQz 〈δLg〉z

∂

∂E

∣

∣

∣

∣

ψ̄

F̄0 − eiQz

F (ψ)

B0

〈

δA‖g

〉

z

∂

∂ψ̄
F̄0

≡ GBz − δgBz
∣

∣

S
− δgBz

∣

∣

F
. (22)

Thus, that F̄0 is undamped by collisionless processes readily follows from Eq. (19). By inspection
of Eq. (19), however, it can be noted that GBz is characterized by multi spatiotemporal
structures, from micro- to meso- to macro-scales [1, 3, 4, 7, 31]. It seems, therefore, appropriate
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to postulate that F̄0 is the solution of the following evolution equation

∂teiQz F̄0 = − eiQz

F (ψ)

B0
∂t

〈

δA‖g

〉

z

∂

∂ψ̄
F̄0

∣

∣

∣

∣

∣

S

−
1

τb

∂

∂ψ

[

τbeiQzδψ̇zδFz

]

S
−

1

τb

∂

∂E

[

τbeiQzδĖzδFz

]

S

−
1

τb

∂

∂ψ

[

τbeiQzδψ̇δF
]

zS
−

1

τb

∂

∂E

[

τbeiQzδĖδF
]

zS
+ eiQz [Cg + S]

∣

∣

∣

zS
, (23)

with the initial condition F̄0(E , µ, Pφ, t = 0) = F0(E , µ, Pφ) introduced above. This equation,
which can be considered as our definition of the PSZS by means of its dynamic evolution on
the spatiotemporal meso- and macro-scales, satisfies the property of PSZS to evolve in time
only due to nonlinear processes and/or sources and collisions [1, 2]. In fact, δA‖z is itself due
to nonlinear processes as described in Eq. (14). Equation (23) is also consistent with the
definition of PSZS adopted in Ref. [4] based on earlier works [3, 33]. In particular, it illuminates
the concept of “neighboring nonlinear equilibria” introduced in [33], where the time evolving
nonlinear equilibrium given by F0∗ has to be understood as consisting of many neighboring
equilibria, slightly deviating from the PSZS F̄0 as

F0∗ ≡ F̄0 + e−iQz eiQzδFz

∣

∣

∣

F
. (24)

The evolution equation for eiQzδFz

∣

∣

∣

F
, meanwhile, is given by Eqs. (19) and (22) Thus,

∂t δgBz
∣

∣

F
= − eiQz

e

m
∂t

[

〈δLg〉z
∂

∂E

∣

∣

∣

∣

ψ̄

F̄0

]

∣

∣

∣

∣

∣

∣

F

+ eiQz

F (ψ)

B0

〈

δA‖g

〉

z

∂

∂ψ̄
∂tF̄0

∣

∣

∣

∣

∣

F

+ eiQz [Cg + S]
∣

∣

∣

zF
−

1

τb

∂

∂ψ

[

τbeiQzδψ̇zδFz

]

F
−

1

τb

∂

∂E

[

τbeiQzδĖzδFz

]

F

−
1

τb

∂

∂ψ

[

τbeiQzδψ̇δF
]

zF
−

1

τb

∂

∂E

[

τbeiQzδĖδF
]

zF
. (25)

For brevity, we omit here the equation for δg̃Bz (and, thus, δF̃Bz), referring interested readers
to Refs. [28, 29] for details. The nonlinear state, consisting of PSZS, F̄0, and the fluctuations
about it, δFBz and δF̃Bz , in the presence of the ZFS, δφz , δA‖z and δB‖z , and a finite level of
symmetry breaking e.m. fluctuations is called the zonal state (ZS).

4. Conclusions and discussion

The theoretical framework, based on nonlinear gyrokinetic theory [8, 9, 30] and presented in this
work, provides a viable route to computing fluctuation induced EP transport on long time scales
in realistic tokamak plasmas and is the summary of the approach conceived and carried out by the
MET project [5] and the international collaboration supporting the Center for Nonlinear Plasma
Science (CNPS) [34], including the Institute for Fusion Theory and Simulation at Zhejiang
University in Hangzhou [35]. The key point to emphasize is that the ZS is self-consistently
computed from: (i) the solution of the linearized Eqs. (2) and (3); (ii) the solution of the
NLSE-like equation for the nonlinear envelope equations, Eq. (10); (iii) the solution of Eqs.
(20), (23) and (25) for the particle response averaged over linear parallel mode structures. This
approach, derived from first principles and based on clear physics assumptions consistent with
experimental observations [1], allows high-fidelity calculation of EP transport by reducing the
dimensionality of the problem, and has been already verified/validated for energetic particle
modes [2, 22], fishbones [1, 36, 37, 38], and numerous other applications [1]. As stated in Sec. 2,
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this theoretical framework goes well beyond the applicability of the wave kinetic equation and
of the radially local description usually adopted in flux-tube or quasilinear approaches, which
can be readily recovered in the proper limits. It further improves beyond usual analyses, as
it addresses transport in the phase space; and allows the ZS to significantly deviate from the
result generally assumed by balancing sources and collisions. As argued in Refs. [4, 28, 29],
this is of crucial importance for computing transport self-consistently on long time scales,
in particular for collisionless EPs. The generality of the present approach does not restrict
its applicability to nonlinear gyrokinetic theory: it can be applied to any nearly integrable
Hamiltonian system, provided the fundamental field equations are known [4]. Furthermore,
given the introduction and detailed analysis of the concept of “neighboring nonlinear equilibria”
[33], this approach provides a novel interpretation of why and how “ensemble averaging”[30, 39]
and “time averaging”[4, 28, 29] among different realizations of the ZS should be consistent. In
other words, this work addresses the equivalence of “statistical” and “ab initio” approaches to
plasma transport. The applicability of the present approach not only to EP [29] but thermal
plasma transport as well is shown in Refs. [4, 28]. In particular, it is possible to show that
radial transport described within this framework reduces to well-known expressions adopted in
the literature (cf, e.g., Ref. [30]), when evolution of plasma profiles on the macro-scales are
considered [4].

The present theoretical framework is also well-suited for the construction of first-principle
based (further) reduced models [5, 34]. The existence of a good asymptotic expansion parameter,
|ωn|τNLn ≫ 1 (cf. Sec. 2), suggests using a weak-field expansion based on diagonal interactions
[40, 41, 42, 43, 44, 45, 46, 47] for obtaining explicit expressions of EP fluxes in the phase space,
including resonance broadening [44], nonlocal behaviors, EP avalanches and fast convective
particle redistributions [1, 2, 48]. These issues are dealt with in detail in Ref. [29]. Here, we
merely remind interested readers that EP induced avalanches, described in this way, consist of
convectively amplified radially propagating solitons, which are accompanied by secular radial
transport [1, 2, 3, 22]. Similar radial spreading due to soliton formation is observed in the
nonlinear interaction of ion temperature gradient driven turbulence and ZFS [26]. When reduced
to diagonal interactions, the nonlinear radial envelope equations can be describe in term of the
nonlinear distortion of the ZS only, that is by F0∗ in Eq. (24), which provides the renormalization

of EP response [1, 2, 3, 4], since it accounts for the modification of the reference EP distribution
function to compensate for effects that are due to nonlinear plasma behaviors (self-interactions).
Equations (23) to (25) can then be cast in the form of a Dyson-like equation [49, 50], which can
be solved for the renormalized ZS and formally represented as Dyson series [1, 2, 3]. EP fluxes
in phase space can then be expressed in a compact form [48] that will be reported in Ref. [29]
and constitute the foundation of the reduced Dyson Schrödinger transport Model (DSM).
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