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Abstract: Micro-Raman and luminescence spectroscopy were combined with morphological analysis
to study the conservation state of differently degraded paper samples, dated from 1873 to 2021. The
aim of the work reported in this paper was to obtain ageing markers based on variations of Raman
and fluorescence spectral features. Raman and luminescence spectra were acquired by scanning
non-printed areas of books, and Raman and fluorescence maps were built by contrasting spectral
parameters point by point, obtaining a micron-scale space resolved imaging of the degradation
pattern. Complementary information on paper morphology and surface compactness were obtained
by high-resolution scanning electron and atomic force microscopy. The proposed non-destructive
procedure is particularly interesting for precious and ancient samples to analyze their degradation
processes and to evaluate the performance and effectiveness of restoration treatments.

Keywords: Raman spectroscopy; luminescence spectroscopy; cultural heritage; paper ageing diagnostics;
Raman spectral imaging; luminescence spectral imaging

1. Introduction

The scientific approach for studying and preserving cultural heritage requires the
definition of non-destructive (or minimally destructive) analytical techniques. The value of
gained information about chemical–physical characterization is always balanced against
the possibility of damaging or losing material of historical relevance. In this respect, in-
trinsically non-destructive spectroscopic techniques, such as reflection Fourier transform
infrared (FTIR), Raman, and luminescence spectroscopy, have demonstrated their useful-
ness, particularly for library heritage, where severe restrictions in sampling are imposed
for monitoring paper artwork ageing. These diagnostic techniques represent very suitable
tools for the study of the interaction of paper with the environment and for the definition
of appropriate treatments to prevent and hinder degradation [1,2].

The principal component of paper artwork is cellulose, which is a natural linear
polymer of glucose monomers linked by glycosidic C–O–C bonds. The number of glucose
monomers, indicated as polymerization degree, can be hundreds or thousands of single
units, depending on the cellulose origin (wood pulp, cotton, or plant). Cellulose chains are
held together by strong hydrogen bonds that promote the aggregation of single chains into
a highly oriented structure, progressively forming the microfiber, the fibril, and the fiber. In
cellulose, regions with regular and well-organized structure (crystalline part) and others
with disordered structure (amorphous part) coexist. The ordered aggregation gives high
tensile strength to cellulose fibers [3].
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The ageing of paper is due to cellulose degradation, which occurs mainly through two
processes: random hydrolysis of the C-O-C linkages between glucose monomers, resulting
in a shortening of the cellulose chain, with a consequent reduction in content of the
crystalline form, and oxidation [4–6]. The lower the crystallinity and polymerization degree
of cellulose, the faster the deterioration, due to the higher accessibility to external agents.

Paper is produced by pressing together cellulose fibers derived from wood, rags,
or grasses, and drying them into flexible sheets. In addition to cellulose fibers, paper
contains hemicellulose, lignin and a certain amount of fillers that are used for bleaching
and strengthening [3]. Paper made from wood pulp, as that produced at the end of the
XIX century, is more readily oxidized than purely cotton paper [7]. Besides internal factors
such as manufacturing, the presence of acid substances, moisture, writing media, transition
metals, or micro-organisms, environmental factors such as climate, exposure to light, air
pollution, and dust can affect the ageing rate of cellulose. In fact, both high levels of
relative humidity and excess in temperature promote hydrolysis reactions and microbial
attack. Furthermore, light causes photo-degradation phenomena, whereas the presence
of suspended dust in the atmosphere increases chemical and physical damage absorbing
water vapor, pollutants, and microorganisms [3].

Ageing deteriorates the mechanical and optical properties of paper material, leading
to thinner and more fragile yellowed/darkened sheets, compromising the readability of
the text. No significant variations in mechanical/optical properties of paper are detected
at the beginning of the ageing process, whose evidence is only provided by measuring
the variation of cellulose structure at molecular level. Hydrolysis reduces the cellulose
polymerization degree, and oxidation leads to the carbonyl and carboxyl group formation.
The recent approach of several works is to correlate these variations to the change of
quantities that can be measured with non-destructive tools. In this respect, intrinsically
non-destructive spectroscopic techniques gained prime importance.

In fact, the changes in the structural properties of paper due to degradation are
reflected in a change of spectroscopic fingerprints values. IR, Raman, and luminescence
spectroscopy were employed to study paper ageing [4–9]. Previous works demonstrated
that all these techniques are able to identify degradation effects on paper exposed to
artificial and natural ageing treatments. IR spectroscopy was employed in most studies
for the low background contribution and simplicity of the measurement procedure. More
recently, Raman spectroscopy was used to study paper ageing related to the oxidative
processes by observing spectral changes in the range 1500–1900 cm−1 [5,6,10] in agreement
with IR data.

Raman spectroscopy was also used to develop a kinetic model to date ancient papers,
investigating the degradation process associated with the breaking of the glucose chain
units due to hydrolysis [4,11]. In Raman spectra, the water peak at 1600 cm−1 is not present
and does not interfere with the acquisition of the bands belonging to oxidized groups
linked to cellulose backbone. The degradation of paper material causes an intensity en-
hancement and a profile change in the luminescence spectrum; this circumstance was used
to investigate the degree of paper deterioration and estimate its manufacturing date [9].

In this respect, the aim of our work was to define a non-destructive diagnostic protocol
combining Raman and luminescence spectroscopy with morphological analysis to obtain
2D chemical mapping of paper artwork conservation state across the whole page. The
Raman micro-spectroscopy allows to study objects with a spatial resolution of about 1 µm,
which is the same order of magnitude of a cellulose fiber diameter (0.4–20 µm). Moreover,
by operating in confocal mode, only the in-focus and on-axis portion of sample contributes
to the Raman signal, strongly reducing the fluorescence background. Further, surface
scanning measurements allow the detection of signals at several points, taking into account
the intrinsic heterogeneity of paper material.

We applied this diagnostic technique to modern and ancient paper samples to define
suitable spectroscopic markers to be used as contrast parameters for building Raman and
luminescence maps.
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Paper samples were also analyzed with a High-Resolution Scanning Electron Micro-
scope (HR-SEM) and an Atomic Force Microscope (AFM). SEM observations allowed us
to observe a difference in the morphology between ancient and modern paper. Therefore,
ageing markers were defined studying the evolution of Raman and luminescence spectra
of a modern paper sample exposed to the ambient light for a period of 20 months. The
as-obtained markers were used to image the conservation state of tens of different paper
samples, from private library books (CC), covering a period of three centuries (XIX–XXI).
The changes in the Raman spectra features can be selectively attributed to the hydrolysis
and oxidation process, obtaining spectral markers that can separately monitor both the
processes. Due to ageing, luminescence intensity increases with changes in shape and
peak position.

The novelty of our procedure is the possibility to obtain an image with µm scale
spatial resolution of paper conservation state, exploring the behavior of specific spectral
markers. The proposed procedure allows us to compare the degradation processes of
different paper samples, and it is of particular interest because it opens the possibility of
choosing the most appropriate restoration treatment evaluating the effectiveness of the used
treatment differentiating restored and non-restored regions, point-by-point, across the page.
Moreover, it has been shown that this protocol, being non-destructive, can be successfully
applied to precious and ancient paper samples, avoiding sampling and damaging.

2. Results
2.1. Raman and Luminescence Spectroscopy Mapping for Monitoring the Modern Paper
Natural Ageing

Before performing spectroscopic characterization of paper sample from ancient books,
as the first step of our study, we exposed a piece of printer paper (2019) to natural light
in the laboratory for about two years. Our aim was to follow the natural degradation
evolution to define suitable contrast parameters for a proper Raman and luminescence
spectral imaging of the ageing processes. A portion of paper was masked from light, as
sketched in Figure 1a. Raman and luminescence maps were acquired after 3, 7, 12, and
20 months of ambient light exposition. The optical microscope image of the region of
the paper sample exposed for seven months, as shown in Figure 1b, shows the browning
of several cellulose fibers. The browning is not uniform, and it is particularly evident
in correspondence of large fibers, likely due to inhomogeneity of the raw material. The
corresponding topographic AFM images (Figure 1c) of browned (A) and white (B) fibers
show that the measured roughness is determined by the type and disposition of the basic
components of paper and not by the change in color.

Figure 2 reports both Raman and photoluminescence spectra acquired from the pa-
per sample before and after 7 and 20 months of exposition. The main peaks observed
in Raman traces of Figure 2a can be related to vibrational features of cellulose carbon
groups, namely the stretching of C–O–C glycosidic bonds between cellulose monomers
(1100 cm−1), the internal vibrations of the C–H groups (1300–1470 cm−1) and the CH2
stretching peak, which is related to the crystalline degree of cellulose (2890 cm−1). The
fingerprint at 1602 cm−1 showing the presence of lignin was not observed in this sam-
ple of laser printer paper. The exposition to ambient light causes intensity decrease and
broadening of C–O–C and CH2 peaks and the appearance of new bands, whose intensity
increases with exposition time, related to the oxidized species attached to cellulose chain,
namely the bands at 1580 cm−1 (stretching of double bonds in C=C–O and O–C=O groups),
1640 cm−1, 1740 cm−1 (stretching of C=O in the carbonyl), 1850 cm−1 (stretching of C=O
in the carboxyl groups), and in the 2300–2800 cm−1 region (overtones and combination of
carboxylic group frequencies) [5,7,8].
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Figure 1. (a) Sketch of the portion of paper sample masked to the laboratory natural light. (b) Optical 
microscope image of the seven months exposed part of paper sample and (c) AFM images taken in 
the region (A) browned fiber, and (B) white fiber. 
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As paper ageing proceeds, the length of cellulose polymer chain decreases due to 
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bands at 1100 and 1380 cm−1. The intensity of the first band, ascribed to the stretching of 
the C–O–C glycosidic bond, is proportional to the number of linkages in the cellulose 

Figure 1. (a) Sketch of the portion of paper sample masked to the laboratory natural light. (b) Optical
microscope image of the seven months exposed part of paper sample and (c) AFM images taken in
the region (A) browned fiber, and (B) white fiber.
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Figure 2. (a) Raman and (b) luminescence spectra acquired from paper sample before and after 7 and
20 months of exposition.

As paper ageing proceeds, the length of cellulose polymer chain decreases due to
hydrolysis reactions. This process can be monitored by recording the intensity of the bands
at 1100 and 1380 cm−1. The intensity of the first band, ascribed to the stretching of the
C–O–C glycosidic bond, is proportional to the number of linkages in the cellulose chain,
while the intensity of the second band, related to the vibrations of C–H groups in the
glucose monomer, is weakly sensitive to the cellulose polymerization degree. Thus, the
intensity ratio RH = I1100/I1380 calculated from the measured Raman spectra is proportional
to the polymerization degree of cellulose in the paper sample [4]. Indeed, the RH marker
decreases as the ageing/exposition time of the paper sample increases. Analogously, the
index CI = I2890/I1380 of cellulose crystallinity describes the decrease in CH2 peak intensity
due to the reduction in content of crystalline form, consequent to the shortening of cellulose
chain length in exposed paper.

The modification in cellulose chain induced by oxidation can be evaluated from the
strength of new peaks appearing in the Raman spectra of exposed papers. The oxidation of
hydroxyl groups in a cellulose chain in an ambient atmosphere leads to the formation of
both C=C double bonds in glucose ring and of C=O bonds (carbonyl groups), which can
be further oxidized to carboxylic groups, depending on the position of the C=O bonds in
cellulose chain [5,8,12]. The ratio OI = A1640–1850/A1580 between the area of carbonyl bands
in the range 1640–1850 cm−1 (A1640–1850), representing the final oxidation stage of cellulose,
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and that of the band at 1580 cm−1 (A1580), corresponding to the presence of intermediate
species, gives information on how advanced the oxidation process is [5,10]. In contrast, the
ratio OT = A1500–2800/A700–3000 between the area of Raman bands of oxidized functional
groups in the range 1500–2800 cm−1 (A1500–2800) and the area of whole spectrum (A700–3000)
measures the amount of oxidation products linked to the cellulose backbone.

Figure 2b reports the photoluminescence spectra of the same paper samples of Figure 2a,
exhibiting two broad bands centered at 580 and 650 nm. By increasing the exposition time,
the total area of luminescence spectrum increases, while the intensity ratio IR between the
first and second peak decreases. Due to the similarity in shape between the 580 nm peak and
the one measured for the wood cellulose, with two peaks (one centered at 488 nm and the
other at 580 nm), recent works correlate the presence of the long cellulose chains in paper
to lower wavelength peak in the explored spectral region [13,14]. Following this hypothesis,
fiber fragmentation promoted by hydrolysis causes an intensity decrease in the first peak.
The increase in luminescence intensity of the second peak is ascribed to the formation of
compounds originating from the degradation of cellulose, hemicellulose, and lignin as simple
sugars, cellulose oligomers, and phenolic products.

Figure 3a shows the white light optical image of non-exposed paper sample. The
area was scanned in Raman/photoluminescence spectral imaging mode, and 2D spectral
arrays of (30 × 30) complete Raman/luminescence spectra were recorded. From these 2D
spectral arrays, five distinct maps for cellulose characterization were extracted, using as
contrast parameters the ratio IR = I580/I645 between the intensities of the luminescence
peaks (Figure 3b) and the CI, RH, OI, and OT markers calculated from Raman spectra
(Figure 3c).
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Figure 3. (a) White light optical image (objective 100×) of 60 × 60 µm2 of non-exposed paper
sample area selected for spectra acquisition. Maps from 2D spectral arrays of (30 × 30) complete
Raman/luminescence spectra recorded in the spectral imaging mode and extracted using as contrast
parameters (b) the ratio IR between the luminescence peak intensities and (c) the CI, RH, OI and
OT markers from Raman spectra. The color code displays the increasing value in the sequence
blue–red–yellow.

These marker maps are referred to the same area of crossing fibers shown in the white
light image of optical microscope (Figure 3a). The used color code displays the increasing
value in the sequence blue–red–yellow. Larger values of CI and RH markers, measured
along the cellulose fiber wall, are correlated with smaller values of OI and OT markers.
This finding gives rise to a bimodal distribution of RH and OI values, extracted from the
map of Figure 3c, as shown in Figure 4. By increasing the exposition time, the RH (OI)
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distribution peak decreases (increases) as expected, and the shape of distributions changes,
becoming unimodal.
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Figure 4. Distributions of (a) RH and (b) OI values extracted from the maps reported in Figure 3c
before and after 7, 12, and 20 months of exposure of paper sample.

Figure 5 reports the mean values of markers, averaged over the distribution, as a
function of exposition time. The decrease in crystalline index (CI) is accompanied by a
decrease in both polymerization degree (RH) and 580 nm luminescence peak intensity (IR),
related to the long cellulose fiber. IR and RH markers show an initial rapid decrease followed
by a slower variation, whereas the first stage rapid increase in OT marker, proportional
to the content of oxidized groups in the cellulose backbone, saturates after 12 months
of exposure (Supplementary Material S2). In contrast, the continuous increase in OI
marker indicates a progressive advancement of oxidation state with the production of C=O
double bonds.
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over the distribution, as a function of the exposure time.

This behaviour agrees with literature data, which report that cellulose degradation can
be regarded as taking place in three or two steps [3,5,15]. In the first rapid stage, the weak or
acid sensitive links are firstly hydrolysed, whereas in the second one, only the amorphous
part of cellulose is randomly hydrolysed, as shown by the bimodal distribution of ageing
marker values. At this stage, the ageing reaction decelerates, and the crystalline part of
cellulose is attacked by hydrolysis/oxidation processes. Thereon, the ageing proceeds
slowly and homogeneously, and the ageing marker value distributions are unimodal. It
is worth noticing that, opposed to what happens for the OT index, the OI marker increase
does not saturate, suggesting a continuous transformation of the intermediate products of
oxidation into carbonyl groups.
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2.2. Raman and Luminescence Spectroscopy Mapping of Modern and Ancient Paper

Figure 6 shows HR-SEM images of two paper samples of XIX (Figure 6a,b) and XXI
(Figure 6c,d) centuries. Long cellulose fibers are clearly visible in the pictures related to
the XIX century paper sample, whereas in those of modern paper, the fibers are mixed
with the presence of granular material. This finding demonstrated the change in paper
composition over the centuries. In fact, modern paper is composed of only up to 50%
short cellulosic fibers, the remaining part being hemicellulose and lignin. On the other
hand, ancient paper was manufactured from long cellulose fibers in larger percentages
with respect to the hemicellulose/lignin content [7,9].
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Figure 6. HR-SEM images of two paper samples of (a,b) XIX and (c,d) XXI century at different
magnifications.

Several topographic AFM images were acquired on ancient and modern papers by
scanning areas of different size, as shown in Figure 7a,b. The AFM images show that the
cellulose fibers of both samples are in a good conservation state without visible breakages,
at least in the analyzed regions, and demonstrate the presence of disordered material in
between the fibers. For each area, the height histogram was drawn, and the corresponding
local roughness was calculated as standard deviation from average value. The obtained
values are reported in the plot of Figure 7c. By increasing the AFM image area, the
roughness of ancient paper increases and saturates at 1.7 µm, whereas modern paper
roughness progressively increases with any saturation observed.

This behavior can be ascribed to the more homogeneous composition of ancient paper
with respect to modern paper, as evidenced in the HR-SEM images. The literature data
report that paper ageing causes a lack of fiber surface compactness [12]; instead, in this
experiment, the roughness of modern paper is larger than that of ancient paper due to its
inhomogeneous composition and its short cellulosic fibers content.

Figure 8a reports representative Raman spectra from XIX century paper compared
with those of modern paper. The measured Raman profiles of ancient paper are quite
similar to those collected from exposed paper, with oxidized group bands above 1500 cm−1,
whereas in the Raman spectra of modern paper, a lignin peak at 1600 cm−1 is present.
The use of wood pulp rather than rags causes an increase in lignin content in paper that
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can be eliminated only with secondary long chemical processes using toxic substances.
Today, it is preferred not to eliminate lignin, leading to the production of low-cost, low-
quality paper [16]. Therefore, the analyzed modern paper samples were manufactured
from short cellulose fibers as the main component (see Figure 6b), but also with lignin and
hemicellulose as secondary components. This difference in manufacturing is reflected in
the value of IR ratio from the luminescence spectra reported in Figure 8b, which is smaller
in modern than in ancient paper. Therefore, this parameter cannot be used to estimate the
degradation degree of paper in a direct and simple way. However, the wavelength distance
between the two luminescence peaks clearly shortens with increasing paper age. In fact, a
shift of wavelength peak (wp) of smaller energy band toward the 580 nm peak is observed.
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We acquired Raman and luminescence spectra from an area of 60 µm × 60 µm for XIX
and XXI century paper samples. The distribution of marker values calculated from Raman
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spectra as defined in the previous paragraph are reported in Figure 9a–c, together with the
distribution of wp obtained from the measured luminescence spectra (Figure 9d).
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Figure 9. Distributions of (a) RH, (b) OI and (c) OT values from Raman spectra together with (d) the
distribution of wp from luminescence spectra for XXI and XIX century paper.

Modern paper displays a long tail of RH values larger than those of ancient paper,
which experienced 124 years of hydrolysis attack. The OI distribution of ancient paper
peaked at about 0.65 and 0.85, whereas that of modern paper peaked at 0.3, with a shoulder
at 0.7. The OT values peak is at about the same position for both paper samples, with a
larger width for modern paper. As expected from the above discussion, in the ancient
paper, oxidation proceeds homogeneously and is more advanced, with a larger content
of carbonyl groups, whereas the increase in hemicellulose and lignin contents, which are
easier to oxidize, accelerates the degradation rate of modern paper.

As shown in Figure 9d, the wp distribution in ancient paper samples shows two peaks,
one centered at about the same value of modern paper and the other one at 640 nm. The
first peak may be due to the permanence of long cellulose fiber in the ancient paper sample,
whereas the shifted peak is associated with changes occurred in paper structure related
to the more rapid denaturation of shorter chains and to other bio-polymeric compounds
present in the paper [13,17].

Non-printed areas of books of XIX, XX, and XXI centuries were analyzed. For each
paper sample, several regions were mapped (Supplementary Material S3), obtaining the
distributions of different marker values. Figure 10 plots the evolution of RH, OI, and OT
markers with ageing time. The reported values are the mean values calculated over the
distributions, and the error bars are the calculated standard deviations. The observed
difference in the paper manufacturing accounts for the large OT values of modern paper
with respect to those of XIX century paper, in which degradation is slow. The OI values
increase monotonically with ageing time, showing several fluctuations that can be explained
with the different storage condition experienced by the books from which the sample paper
is taken. In this respect, the RH marker shows a steep decrease with ageing time, although
the initial values of XXI century paper samples are scattered.
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3. Materials and Methods

We studied several paper samples from books belonging to library heritage of our
families and covering a period of three centuries (XIX–XXI). The paper ages are certified
by publication dates. We analysed from each book at least four different areas, collecting
Raman and luminescence spectra from non-printed areas mainly located at the page edges.

A Zeiss Z2m optical microscope was used for preliminary sample observation.
Raman and luminescence spectra were acquired with a confocal micro-Raman spec-

trometer (Horiba XploRA Plus) with a 532 nm-wavelength laser. The Raman/luminescence
signals were collected through microscope equipped with 5×, 10×, 50×, and 100× objec-
tives. Laser power can be attenuated by neutral density filters. After preliminary studies,
suitable conditions for both laser power and acquisition times were selected to obtain a
good S/N ratio and safe conditions for the paper. Raman and luminescence spectra were
recorded at every point of a selected area following a prefixed grid defining a 2D map and
building a 2D array of spectra. The recorded spectra were background subtracted and
smoothed. Areas ranging from 0.0036 to 0.64 mm2 were scanned with different grid step
size. By extracting Raman/luminescence spectra features, such as peak intensity, band
width, and peak position, from the recorded 2D arrays of spectra, different spectral images
could be obtained.

The spectral maps reported in this paper were obtained under the following conditions:
laser power 25 mW, accumulation time 0.7 s, range 70–4000 cm−1, for the Raman spectra,
and laser power 1 mW, accumulation time 1 s, for the luminescence spectra. In both
cases, the 2D array contained 900 spectra, acquired with an objective 100× in an area of
60 × 60 µm2, with a x,y grid step size of 2 µm.

The morphology of modern and ancient paper was examined by using a field-emission
Zeiss HR-SEM Leo 1525 with a resolution of 1.5 nm at 20 kV.

We also performed surface analysis using a Park Systems XE-150 AFM operating
in non-contact mode. Pre-mounted non-contact, high-resolution cantilevers working at
309 MHz with nominal tip radius below 10 nm were used. Images were flattened by
subtracting a linear background for the fast scan direction and a quadratic background for
the slow scan direction. Different paper sample regions were analyzed, extracting surface
height histogram and the corresponding local surface roughness defined as the standard
deviation of surface height with respect to the mean value.

4. Conclusions

In this work, we followed the natural degradation evolution of paper exposed to
natural light to define suitable contrast parameters for the spectral imaging of ageing
processes. In this way, we were able to define a procedure for performing spectroscopic
characterization of paper sample from ancient books covering a period of three centuries,
from 1873 to 2021.
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The proposed diagnostic protocol is based on Raman and luminescence spectroscopy
combined with morphological analysis to obtain 2D chemical mapping of paper artwork
conservation state across the whole page and, being non-destructive, is of interest for
conservation and restoration of precious and ancient books and papers.

Paper samples of different ages undergo different degradation processes; moreover,
for each paper sample, different ageing patterns can be observed. In spite of this difficulty,
once we defined the correct spectral markers to be used as contrast parameters in the
Raman and luminescence maps, the spectral imaging offered a suitable description of such
patterns, across the sampled area, with different length scales.

However, the number of fingerprint peaks in Raman spectra is larger than those
of luminescence spectra. In particular, the markers obtained from Raman spectra can
discriminate between hydrolysis and oxidation processes, whereas a deconvolution should
be applied to the luminescence spectra to discriminate the different contributions of paper
degradation, making the analysis of paper ageing based on this spectroscopic technique
more complicated.

The obtained results confirmed that the applied method can be used to compare
degradation processes of different paper samples in a quick and reliable way.

The possibility to successfully apply this method for evaluating the effectiveness of
cleaning and restoration treatment on paper artifacts will be the subject of our next work.

Supplementary Materials: The following supporting information can be downloaded online. S1:
pictures of analysed books; S2: Raman maps of OT marker for not-exposed and exposed paper; S3:
Raman maps of RH, OI, and OT markers for XIX century paper.
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