The development of volatile organic compounds (VOCs) sensor, operating at room temperature (RT), is a challenge for the research community. In this framework, we present a device based on a graphene-like (GL) material suitably tested as sensing layer for the ethanol detection. GL material was obtained through a two steps oxidation/reduction method starting from a nanostructured carbon black. GL material combines a defect-free basal plane graphenic structure with the presence of oxygen functional groups, mainly carboxylic, located on the layer edges. A GL-based device was realized and investigated for the detection of ethanol. The experiments were performed under atmospheric pressure, in a dry air and at RT. Results showed that GL material is a promising candidate for the detection of low concentration of ethanol at RT. © Springer International Publishing AG 2018.

A new chemical sensing material for ethanol detection: Graphene-like film

Di Francia, G.;Miglietta, M.L.;Massera, E.;Polichetti, T.
2018-01-01

Abstract

The development of volatile organic compounds (VOCs) sensor, operating at room temperature (RT), is a challenge for the research community. In this framework, we present a device based on a graphene-like (GL) material suitably tested as sensing layer for the ethanol detection. GL material was obtained through a two steps oxidation/reduction method starting from a nanostructured carbon black. GL material combines a defect-free basal plane graphenic structure with the presence of oxygen functional groups, mainly carboxylic, located on the layer edges. A GL-based device was realized and investigated for the detection of ethanol. The experiments were performed under atmospheric pressure, in a dry air and at RT. Results showed that GL material is a promising candidate for the detection of low concentration of ethanol at RT. © Springer International Publishing AG 2018.
2018
Gas sensors;Ethanol sensing device;Graphene-like materials;VOCs detection;Room-temperature device;Oxidized carbon black
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact