Fiber Bragg Grating (FBG) technology is very attractive to develop sensors for the measurement of thermal and mechanical parameters in biological applications, particularly in presence of electromagnetic interferences. This work presents the design, working principle and experimental characterization of a force sensor based on two FBGs, with the feature of being compatible with Magnetic Resonance. Two prototypes based on different designs are considered and characterized: 1) the fiber with the FBGs is encapsulated in a polydimethylsiloxane (PDMS) sheet; 2) the fiber with the FBGs is free without the employment of any polymeric layer. Results show that the prototype which adopts the polymeric sheet has a wider range of measurement (4200 mN vs 250 mN) and good linearity; although it has lower sensitivity (≈0.1 nm-N1 vs 7 nm-N1). The sensor without polymeric layer is also characterized by employing a differential configuration which allows neglecting the influence of temperature. This solution improves the linearity of the sensor, on the other hand the sensitivity decreases. The resulting good metrological properties of the prototypes here tested make them attractive for the intended application and in general for force measurement during biomedical applications in presence of electromagnetic interferences. © 2014 IEEE.

An MR-compatible force sensor based on FBG technology for biomedical application

Polimadei, A.;Caponero, M.A.
2014

Abstract

Fiber Bragg Grating (FBG) technology is very attractive to develop sensors for the measurement of thermal and mechanical parameters in biological applications, particularly in presence of electromagnetic interferences. This work presents the design, working principle and experimental characterization of a force sensor based on two FBGs, with the feature of being compatible with Magnetic Resonance. Two prototypes based on different designs are considered and characterized: 1) the fiber with the FBGs is encapsulated in a polydimethylsiloxane (PDMS) sheet; 2) the fiber with the FBGs is free without the employment of any polymeric layer. Results show that the prototype which adopts the polymeric sheet has a wider range of measurement (4200 mN vs 250 mN) and good linearity; although it has lower sensitivity (≈0.1 nm-N1 vs 7 nm-N1). The sensor without polymeric layer is also characterized by employing a differential configuration which allows neglecting the influence of temperature. This solution improves the linearity of the sensor, on the other hand the sensitivity decreases. The resulting good metrological properties of the prototypes here tested make them attractive for the intended application and in general for force measurement during biomedical applications in presence of electromagnetic interferences. © 2014 IEEE.
9781424479290
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact