Thin films of Cu2ZnSnS4 (CZTS) were prepared by sulfurization of multilayered precursors of ZnS, Cu, and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray spectroscopy, and SEM were used for structural, compositional, and morphological analyses, respectively. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric measurements and Photothermal Deflection Spectroscopy. These films show a clear dependence of the optical and microstructural properties on the tin content. As the tin content increases we found: (i) an increase in both crystalline domain and grain size, (ii) an abrupt increase of the energy gap of about 150 meV, from 1.48 to 1.63 eV, and (iii) a decrease of sub-gap absorption up to two orders of magnitude. The results are interpreted assuming the formation of additional defects as the tin content is reduced. © 2014 AIP Publishing LLC.

Stoichiometry effect on Cu2ZnSnS4 thin films morphological and optical properties

Mittiga, A.;Mangiapane, P.;Esposito, E.;Valentini, M.
2014-01-01

Abstract

Thin films of Cu2ZnSnS4 (CZTS) were prepared by sulfurization of multilayered precursors of ZnS, Cu, and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray spectroscopy, and SEM were used for structural, compositional, and morphological analyses, respectively. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric measurements and Photothermal Deflection Spectroscopy. These films show a clear dependence of the optical and microstructural properties on the tin content. As the tin content increases we found: (i) an increase in both crystalline domain and grain size, (ii) an abrupt increase of the energy gap of about 150 meV, from 1.48 to 1.63 eV, and (iii) a decrease of sub-gap absorption up to two orders of magnitude. The results are interpreted assuming the formation of additional defects as the tin content is reduced. © 2014 AIP Publishing LLC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact