The performed investigation focus on a monoblock type design for a water cooled DEMO divertor using Eurofer as structural material. In 2013, a study case of such a concept was presented. It was shown that basic concepts using Eurofer as structural material are limited to an incident heat flux of 8 MW m -2. Since, the EFDA agency issued new specifications. In this study, the conceptual design is reassessed with regard to specifications. Then, steady state thermal analyses and thermo-mechanical elastic analyses have been performed to define an upgrade of the geometry taking into account new specifications, design criteria and the maximum heat flux requirement of 10 MW m-2. An analysis of the influence of each adjustable geometrical parameter on thermo-mechanical design criteria was performed. As a consequence, geometrical parameters were set in order to fit to materials requirements. For defined hydraulic conditions taken in the most favourable configuration, the limit of this design is estimated to an incident heat flux of 10 MW m -2. Margin to critical heat flux and rules against progressive deformation/ratcheting in structural material limit the design. © 2014 Elsevier B.V.

Design of a water cooled monoblock divertor for DEMO using Eurofer as structural material

Visca, E.
2014-01-01

Abstract

The performed investigation focus on a monoblock type design for a water cooled DEMO divertor using Eurofer as structural material. In 2013, a study case of such a concept was presented. It was shown that basic concepts using Eurofer as structural material are limited to an incident heat flux of 8 MW m -2. Since, the EFDA agency issued new specifications. In this study, the conceptual design is reassessed with regard to specifications. Then, steady state thermal analyses and thermo-mechanical elastic analyses have been performed to define an upgrade of the geometry taking into account new specifications, design criteria and the maximum heat flux requirement of 10 MW m-2. An analysis of the influence of each adjustable geometrical parameter on thermo-mechanical design criteria was performed. As a consequence, geometrical parameters were set in order to fit to materials requirements. For defined hydraulic conditions taken in the most favourable configuration, the limit of this design is estimated to an incident heat flux of 10 MW m -2. Margin to critical heat flux and rules against progressive deformation/ratcheting in structural material limit the design. © 2014 Elsevier B.V.
2014
Divertor;DEMO;Design
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/4083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact