This paper shows an effective implementation of the fast charging concept in the electric local public transport context. An electric minibus powered with a lead-acid battery is considered as a case-study. Its traction battery is redesigned using 12 V standard lithium-iron-phosphate modules to benefit from the higher performance of the lithium battery technology compared to the lead-acid one. The minibus can achieve a continuous operation characterised by 20 min of traveling alternated with 10 min of standstill for fast recharging of the battery. Experiments performed on a single module of the battery show that the load profile is sustained without appreciable issues both in temperature and life degradation of the lithium cells. © 2015 IEEE.
Implementation of the fast charging concept for electric local public transport: The case-study of a minibus
Vellucci F.
2015-01-01
Abstract
This paper shows an effective implementation of the fast charging concept in the electric local public transport context. An electric minibus powered with a lead-acid battery is considered as a case-study. Its traction battery is redesigned using 12 V standard lithium-iron-phosphate modules to benefit from the higher performance of the lithium battery technology compared to the lead-acid one. The minibus can achieve a continuous operation characterised by 20 min of traveling alternated with 10 min of standstill for fast recharging of the battery. Experiments performed on a single module of the battery show that the load profile is sustained without appreciable issues both in temperature and life degradation of the lithium cells. © 2015 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.