In this work, in-depth considerations about FPGA-CPU architectures design methods are presented together with some possible plant applications. FPGAs are used because of their potentials in guaranteeing parallelism, synchronism and high reliability tasks; on the other hand CPUs are crucial to higher precision computations and to reproduce data and results on a graphical interface, thus resulting in an improvement in the human-machine-interface (HMI). Design choices are here reported to justify the benefits from the use of both CPU-FPGA approaches. Taking advantage of these features, the LabVIEW environment and its digital platform is expanded in order to develop a novel tool able to support designers during the fundamental phases of a supervision and control tool realization: from the model development to the digital hardware implementation and testing. LabVIEW is able to communicate with several languages like Matlab or Scilab for a theoretical model study and simulation, and VHDL for a digital implementation, taking the advantages from both development environments. Main results have been reported concerning studies of control systems in nuclear plant facilities, showing how a fulldigital platform can be very useful in developing monitoring and control instrumentation. This new tool is thought to improve the so-called hardware in the loop (HIL) simulations and to accelerate the process of prototypes implementation and testing, using a more accurate and reliable environment in terms of performance and safety. Copyright © 2013 by ASME.

Using a hybrid FPGA-CPU platform for a user-friendly environment in control systems design: A possible application to nuclear plants

Tuccillo, A.;Surrenti, V.;Ravera, G.;Giovenale, E.;Gallerano, G.P.;Doria, A.;Di Palma, E.;Dattoli, G.;Ceccuzzi, S.;Spassovsky, I.
2013

Abstract

In this work, in-depth considerations about FPGA-CPU architectures design methods are presented together with some possible plant applications. FPGAs are used because of their potentials in guaranteeing parallelism, synchronism and high reliability tasks; on the other hand CPUs are crucial to higher precision computations and to reproduce data and results on a graphical interface, thus resulting in an improvement in the human-machine-interface (HMI). Design choices are here reported to justify the benefits from the use of both CPU-FPGA approaches. Taking advantage of these features, the LabVIEW environment and its digital platform is expanded in order to develop a novel tool able to support designers during the fundamental phases of a supervision and control tool realization: from the model development to the digital hardware implementation and testing. LabVIEW is able to communicate with several languages like Matlab or Scilab for a theoretical model study and simulation, and VHDL for a digital implementation, taking the advantages from both development environments. Main results have been reported concerning studies of control systems in nuclear plant facilities, showing how a fulldigital platform can be very useful in developing monitoring and control instrumentation. This new tool is thought to improve the so-called hardware in the loop (HIL) simulations and to accelerate the process of prototypes implementation and testing, using a more accurate and reliable environment in terms of performance and safety. Copyright © 2013 by ASME.
9780791855829
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/4450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact