This work presents a thin film device, combining, on the same glass substrate, photosensors and long-pass interferential filter to achieve a compact and efficient sensor for biomolecule detection. The photosensors are amorphous silicon stacked structures, while the interferential filter is fabricated alternating layers of silicon dioxide and titanium dioxide, directly grown over the photosensors. The system has been optimized to effectively detect the natural fluorescence of Ochratoxin A, a highly toxic mycotoxin present in different food commodities. In particular, the long-pass interferential filter has been designed to reject the wavelengths arising from the excitation source (centered at 330 nm) thus transmitting the OTA emission spectrum (centered at 470 nm). Experimental results show that the filter strongly reduces the photosensors quantum efficiency below 420 nm, while keeps it nearly constant at higher wavelength. © Springer International Publishing AG 2018.

Integration of amorphous silicon photosensors with thin film interferential filter for biomolecule detection

Tucci, M.
2018-01-01

Abstract

This work presents a thin film device, combining, on the same glass substrate, photosensors and long-pass interferential filter to achieve a compact and efficient sensor for biomolecule detection. The photosensors are amorphous silicon stacked structures, while the interferential filter is fabricated alternating layers of silicon dioxide and titanium dioxide, directly grown over the photosensors. The system has been optimized to effectively detect the natural fluorescence of Ochratoxin A, a highly toxic mycotoxin present in different food commodities. In particular, the long-pass interferential filter has been designed to reject the wavelengths arising from the excitation source (centered at 330 nm) thus transmitting the OTA emission spectrum (centered at 470 nm). Experimental results show that the filter strongly reduces the photosensors quantum efficiency below 420 nm, while keeps it nearly constant at higher wavelength. © Springer International Publishing AG 2018.
2018
Photosensors;Ochratoxin A;Amorphous silicon;Thin film;Interferential filter
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/4462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact