In order to optimize the optoelectronic properties of novel solar cell architectures, such as the amorphous-crystalline interface in silicon heterojunction devices, we calculate and analyze the local microscopic structure at this interface and in bulk a-Si:H, in particular with respect to the impact of material inhomogeneities. The microscopic information is used to extract macroscopic material properties, and to identify localized defect states, which govern the recombination properties encoded in quantities such as capture cross sections used in the Shockley- Read-Hall theory. To this end, atomic configurations for a-Si:H and a- Si:H/c-Si interfaces are generated using molecular dynamics. Density functional theory calculations are then applied to these configurations in order to obtain the electronic wave functions. These are analyzed and characterized with respect to their localization and their contribution to the (local) density of states. GW calculations are performed for the a-Si:H configuration in order to obtain a quasi-particle corrected absorption spectrum. The results suggest that the quasi-particle corrections can be approximated through a scissors shift of the Kohn-Sham energies.

Ab Initio Description of Optoelectronic Properties at Defective Interfaces in Solar Cells

Celino, Massimo;Gusso, Michele;Giusepponi, Simone;
2017

Abstract

In order to optimize the optoelectronic properties of novel solar cell architectures, such as the amorphous-crystalline interface in silicon heterojunction devices, we calculate and analyze the local microscopic structure at this interface and in bulk a-Si:H, in particular with respect to the impact of material inhomogeneities. The microscopic information is used to extract macroscopic material properties, and to identify localized defect states, which govern the recombination properties encoded in quantities such as capture cross sections used in the Shockley- Read-Hall theory. To this end, atomic configurations for a-Si:H and a- Si:H/c-Si interfaces are generated using molecular dynamics. Density functional theory calculations are then applied to these configurations in order to obtain the electronic wave functions. These are analyzed and characterized with respect to their localization and their contribution to the (local) density of states. GW calculations are performed for the a-Si:H configuration in order to obtain a quasi-particle corrected absorption spectrum. The results suggest that the quasi-particle corrections can be approximated through a scissors shift of the Kohn-Sham energies.
Electronic structure;Amorphous silicon;Optical properties;Molecular dynamics
File in questo prodotto:
File Dimensione Formato  
Optoelectronic Properties.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/4479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact