In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed. © 2014 American Institute of Physics.
Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory
Cardinali, A.
2014-01-01
Abstract
In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed. © 2014 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.