Photo-nuclear interactions are relevant in many research fields of both fundamental and applied physics and, for this reason, accurate Monte Carlo simulations of photo-nuclear interactions can provide a valuable and indispensable support in a wide range of applications (i.e from the optimisation of photo-neutron source target to the dosimetric estimation in high energy accelerator, etc). Unfortunately, few experimental photo-nuclear data are available above 100 MeV, so that, in the high energy range (from hundreds of MeV up to GeV scale), the code predictions are based on physical models. The aim of this work is to compare the predictions of relevant observables involving photon-nuclear interaction modelling, obtained with GEANT4 and FLUKA, to experimental data (if available), in order to assess the code estimation reliability, over a wide energy range. In particular, the comparison of the estimated photo-neutron yields and energy spectra with the experimental results of the n@BTF experiment (carried out at the Beam Test Facility of DaΦne collider, in Frascati, Italy) is here reported and discussed. Moreover, the preliminary results of the comparison of the cross sections used in the codes with the"evaluated' data recommended by the IAEA are also presented for some selected cases (W, Pb, Zn). © The Authors, published by EDP Sciences, 2017.

Quantification of the validity of simulations based on Geant4 and FLUKA for photo-nuclear interactions in the high energy range

Guarnieri, G.;Capogni, M.;Quintieri, L.
2017

Abstract

Photo-nuclear interactions are relevant in many research fields of both fundamental and applied physics and, for this reason, accurate Monte Carlo simulations of photo-nuclear interactions can provide a valuable and indispensable support in a wide range of applications (i.e from the optimisation of photo-neutron source target to the dosimetric estimation in high energy accelerator, etc). Unfortunately, few experimental photo-nuclear data are available above 100 MeV, so that, in the high energy range (from hundreds of MeV up to GeV scale), the code predictions are based on physical models. The aim of this work is to compare the predictions of relevant observables involving photon-nuclear interaction modelling, obtained with GEANT4 and FLUKA, to experimental data (if available), in order to assess the code estimation reliability, over a wide energy range. In particular, the comparison of the estimated photo-neutron yields and energy spectra with the experimental results of the n@BTF experiment (carried out at the Beam Test Facility of DaΦne collider, in Frascati, Italy) is here reported and discussed. Moreover, the preliminary results of the comparison of the cross sections used in the codes with the"evaluated' data recommended by the IAEA are also presented for some selected cases (W, Pb, Zn). © The Authors, published by EDP Sciences, 2017.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/4840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact