In the framework of the extension of the lifetime of currently operating reactors as well as of issues connected to decommissioning, accurate calculations of neutron and gamma responses outside the reactor core are increasingly being sought. Recently Monte Carlo calculations have been extended to provide a deep penetration capability incorporated within the eigenvalue calculation. This allows, in principle, neutron and gamma ray responses quite far outside the fissile region to be calculated within the same source-iteration scheme employed to define the neutronic responses in the fissile zone. In this paper, the new algorithm is compared to the classic decoupled approach - an eigenvalue calculation followed by a fixed source one - with the point of decoupling chosen as the fission sites. Two contrasting sample problems are discussed: a small fast research reactor and a large GEN-III Pressurized Water Reactor. The latter problem highlights the role of superhistories in maintaining the fundamental mode. © The Authors, published by EDP Sciences, 2017.

Radiation transport out from the reactor core: To decouple or not to decouple

Console Camprini, P.;Burn, K.W.
2017

Abstract

In the framework of the extension of the lifetime of currently operating reactors as well as of issues connected to decommissioning, accurate calculations of neutron and gamma responses outside the reactor core are increasingly being sought. Recently Monte Carlo calculations have been extended to provide a deep penetration capability incorporated within the eigenvalue calculation. This allows, in principle, neutron and gamma ray responses quite far outside the fissile region to be calculated within the same source-iteration scheme employed to define the neutronic responses in the fissile zone. In this paper, the new algorithm is compared to the classic decoupled approach - an eigenvalue calculation followed by a fixed source one - with the point of decoupling chosen as the fission sites. Two contrasting sample problems are discussed: a small fast research reactor and a large GEN-III Pressurized Water Reactor. The latter problem highlights the role of superhistories in maintaining the fundamental mode. © The Authors, published by EDP Sciences, 2017.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/4907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact