The increasing interest towards biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. Common examples of electro-sensitive materials include phospholipids that can be used to design nano-sized vesicles suitable for external electric actuation. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility of controlling drug release from liposomes mediated by nanosecond pulsed electric fields.

Feasibility of Drug Delivery Mediated by Ultra-Short and Intense Pulsed Electric Fields

Merla C.;
2019

Abstract

The increasing interest towards biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. Common examples of electro-sensitive materials include phospholipids that can be used to design nano-sized vesicles suitable for external electric actuation. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility of controlling drug release from liposomes mediated by nanosecond pulsed electric fields.
978-1-5386-1311-5
Feasibility Studies; Liposomes; Nanotechnology; Phospholipids; Electricity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/54241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact