The Lower Hybrid Current Drive (LHCD) has been analysed in DEMO tokamak plasma in the «pulsed and steady state regime» considering two plasma scenarios characterized, respectively, by flat density profile and peaked density profiles. We have obtained LH deposition profiles in cases of neglecting the effect of spectral broadening produced by PI at the edge. By comparing the Power Deposition Profiles for both DEMO scenarios («flat» and «peaked»), the SOL of DEMO does not play any role in the absorption of the LH wave. In all cases the deposition is localized inside the separatrix layer r/a≤1. By lowering the parallel wave-number peak of the power spectrum from 1.8 to 1.5, the accessibility condition in both case prevents the power from reaching the deposition layer apart from a small fraction which pertains to the higher n∥ of the power spectrum. The spectrum centred at 1.8 is suggested to be useful in DEMO. More realistically, as supported by available data of LHCD in a wide range of operating densities, the effect of parametric decay instability (PDI) can produce a spectral broadening which should be included in the simulations. Further studies would be necessary for assessing the temperature profiles in the SOL at reactor-graded conditions. This is because, if the SOL temperature is at least of the order of 50 to 100 eV, the effect of PDI broads the spectrum up to n∥≤10, and the deposition profile is slightly wider but not much shifted outwards. © 2014 American Institute of Physics.

Assessment of the LH wave for demo in pulsed and steady state scenario

Tuccillo, A.A.;Ravera, G.L.;Marinucci, M.;Cesario, R.;Ceccuzzi, S.;Castaldo, C.;Cardinali, A.
2014

Abstract

The Lower Hybrid Current Drive (LHCD) has been analysed in DEMO tokamak plasma in the «pulsed and steady state regime» considering two plasma scenarios characterized, respectively, by flat density profile and peaked density profiles. We have obtained LH deposition profiles in cases of neglecting the effect of spectral broadening produced by PI at the edge. By comparing the Power Deposition Profiles for both DEMO scenarios («flat» and «peaked»), the SOL of DEMO does not play any role in the absorption of the LH wave. In all cases the deposition is localized inside the separatrix layer r/a≤1. By lowering the parallel wave-number peak of the power spectrum from 1.8 to 1.5, the accessibility condition in both case prevents the power from reaching the deposition layer apart from a small fraction which pertains to the higher n∥ of the power spectrum. The spectrum centred at 1.8 is suggested to be useful in DEMO. More realistically, as supported by available data of LHCD in a wide range of operating densities, the effect of parametric decay instability (PDI) can produce a spectral broadening which should be included in the simulations. Further studies would be necessary for assessing the temperature profiles in the SOL at reactor-graded conditions. This is because, if the SOL temperature is at least of the order of 50 to 100 eV, the effect of PDI broads the spectrum up to n∥≤10, and the deposition profile is slightly wider but not much shifted outwards. © 2014 American Institute of Physics.
9780735412101
Lower Hybrid Waves;Fusion Reactor;Plasma heating;Current Drive
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/5630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact