In this paper, the effect of post synthesis annealing treatments on a Fe(Se,Te) polycrystalline material is evaluated and discussed. The samples have been obtained via melting route. The material has been subjected to a high-Temperature annealing treatment, carried out for 45 h at 680 °C. The role of the cooling step was investigated comparing samples obtained after a controlled cooling or after quenching in liquid nitrogen. From a morpho-structural point of view, the annealing treatment improves homogeneity, with respect to pristine samples, and influences secondary phase precipitate morphology. Regarding superconducting properties, a key role of the cooling procedure is assessed: controlled cooling leads in fact to a significant improvement of high field behaviour with respect to the melted material, while quenched samples are characterized by a worsening of the superconducting properties. Despite the overall worsening, however, the quenched samples show evidence of the presence of superconducting phases characterized by a remarkably high critical temperature (Tc > 18 K), observed for these materials only in films or under pressure.
Effect of annealing on structure and superconducting properties in Fe(Se,Te)
Angrisani Armenio A.;Augieri A.;Celentano G.;De Marzi G.;Fiamozzi Zignani C.;Fabbri F.;La Barbera A.;Padella F.;Rizzo F.;Vannozzi A.
2020-01-01
Abstract
In this paper, the effect of post synthesis annealing treatments on a Fe(Se,Te) polycrystalline material is evaluated and discussed. The samples have been obtained via melting route. The material has been subjected to a high-Temperature annealing treatment, carried out for 45 h at 680 °C. The role of the cooling step was investigated comparing samples obtained after a controlled cooling or after quenching in liquid nitrogen. From a morpho-structural point of view, the annealing treatment improves homogeneity, with respect to pristine samples, and influences secondary phase precipitate morphology. Regarding superconducting properties, a key role of the cooling procedure is assessed: controlled cooling leads in fact to a significant improvement of high field behaviour with respect to the melted material, while quenched samples are characterized by a worsening of the superconducting properties. Despite the overall worsening, however, the quenched samples show evidence of the presence of superconducting phases characterized by a remarkably high critical temperature (Tc > 18 K), observed for these materials only in films or under pressure.File | Dimensione | Formato | |
---|---|---|---|
Effect of annealing.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.