The ITER Radial Neutron Camera (RNC) is a diagnostic system designed as a multichannel detection system to measure the uncollided neutron flux from the plasma, generated in the tokamak vacuum vessel, providing information on neutron emissivity profile. The RNC consists of array of cylindrical collimators located in two diagnostic structures: the ex-port system and the in-port system. The in-port system, contains the diamond detectors which need a temperature protection. Feasibility study of the efficiency of the cooling system for the In-port Detector Modules of the RNC during baking process was the main goal of thermo-hydraulic numerical modeling. The paper presents the concept of the cooling system layout and the original way of integration of numerical thermo-hydraulic analyses of the in-port detector cassette. Due to the large extent of the detector cassette it is impossible to include all relevant thermal and hydraulic effects in one global model with sufficient level of details. Thus the modelling strategy is based on the concept of three stage modelling from details to global model. The presented paper includes results of numerical calculations made with ANSYS Fluent software in order to provide the final answer, including calculation of heat loads in the detector cassette from adjacent walls during baking and normal operation conditions.

Thermo-hydraulic modeling of the ITER radial neutron camera

Crescenzi F.;Esposito B.;Marocco D.;Mazzone G.;Brolatti G.;Moro F.;Centioli C.;Dongiovanni D.;
2020-01-01

Abstract

The ITER Radial Neutron Camera (RNC) is a diagnostic system designed as a multichannel detection system to measure the uncollided neutron flux from the plasma, generated in the tokamak vacuum vessel, providing information on neutron emissivity profile. The RNC consists of array of cylindrical collimators located in two diagnostic structures: the ex-port system and the in-port system. The in-port system, contains the diamond detectors which need a temperature protection. Feasibility study of the efficiency of the cooling system for the In-port Detector Modules of the RNC during baking process was the main goal of thermo-hydraulic numerical modeling. The paper presents the concept of the cooling system layout and the original way of integration of numerical thermo-hydraulic analyses of the in-port detector cassette. Due to the large extent of the detector cassette it is impossible to include all relevant thermal and hydraulic effects in one global model with sufficient level of details. Thus the modelling strategy is based on the concept of three stage modelling from details to global model. The presented paper includes results of numerical calculations made with ANSYS Fluent software in order to provide the final answer, including calculation of heat loads in the detector cassette from adjacent walls during baking and normal operation conditions.
2020
978-0-7354-1998-8
File in questo prodotto:
File Dimensione Formato  
Thermo-hydraulic modeling of the ITER radial neutron camera.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.37 MB
Formato Adobe PDF
3.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/59005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact