The process of generating electricity using solar energy took a great interest in the recent period for its contribution to the reduction of the fossil fuel consumption and the harmful emissions to the environment. The main task of this article is to simulate the thermal performance of a solar power plant for electricity production using a parabolic trough concentrator for accumulating the solar heat. The plant includes a stratified storage tank, steam generator, steam turbine and an electric generator. The simulation studies the effect of the design parameters of the solar field and the storage tank on the annual performance of a 1 MWe solar electric power plant. The simulation platform TRNSYS was used to model the solar power plant including the solar concentrator field, the storage tank, and the steam generator. The simulation predicts the instantaneous and annual heat energy collected by the solar concentrator and the heat energy rate supplied, extracted, and stored in the storage tank. It predicts also the rate and the quality of the steam produced. This analysis was applied to four sites in Egypt to study the effect of the solar radiation on the energy produced in those sites. © Copyright 2016 by ASME.

Annual simulation of the thermal performance of solar power plant for electricity production using TRNSYS

Giaconia, A.
2016

Abstract

The process of generating electricity using solar energy took a great interest in the recent period for its contribution to the reduction of the fossil fuel consumption and the harmful emissions to the environment. The main task of this article is to simulate the thermal performance of a solar power plant for electricity production using a parabolic trough concentrator for accumulating the solar heat. The plant includes a stratified storage tank, steam generator, steam turbine and an electric generator. The simulation studies the effect of the design parameters of the solar field and the storage tank on the annual performance of a 1 MWe solar electric power plant. The simulation platform TRNSYS was used to model the solar power plant including the solar concentrator field, the storage tank, and the steam generator. The simulation predicts the instantaneous and annual heat energy collected by the solar concentrator and the heat energy rate supplied, extracted, and stored in the storage tank. It predicts also the rate and the quality of the steam produced. This analysis was applied to four sites in Egypt to study the effect of the solar radiation on the energy produced in those sites. © Copyright 2016 by ASME.
9780791850220
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/6042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact