Uncertainty in energy and environmental statistics is a major issue in decision support to policy making. The need for timely and reliable statistics boosts the search for methods that reduce error in estimation. In this work, a method for estimating the uncertainty of energy and environmental statistics coming from different statistical sources is outlined, using as a framework a discussion on nature of uncertainty and the Black Swan problem is also outlined. The proposed method is then applied to an environmental problem using the concept of anti-fragility, to improve the decision support systems in energy policy analysis.
L'incertezza nelle statistiche energetiche e ambientali è un fattore critico nel supporto decisionale nelle politiche energetiche. In questo lavoro è proposto un metodo per la stima di dati provenienti da diverse fonti statistiche a partire da una discussione sul la natura dell'incertezza e il problema del cigno nero. Il metodo proposto viene poi applicato ad un problema ambientale utilizzando il concetto di anti-fragilità, per migliorare i sistemi di supporto alle decisioni nell'analisi di politica energetica.
On uncertainty estimation in energy and environmental statistics. An anti-fragile approach
Rao, M.;
2022-01-01
Abstract
Uncertainty in energy and environmental statistics is a major issue in decision support to policy making. The need for timely and reliable statistics boosts the search for methods that reduce error in estimation. In this work, a method for estimating the uncertainty of energy and environmental statistics coming from different statistical sources is outlined, using as a framework a discussion on nature of uncertainty and the Black Swan problem is also outlined. The proposed method is then applied to an environmental problem using the concept of anti-fragility, to improve the decision support systems in energy policy analysis.File | Dimensione | Formato | |
---|---|---|---|
RT-2022-03-ENEA.pdf
accesso aperto
Descrizione: Documento completo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.