A theoretical model is proposed for a point light source – dealt with as a randomly-oriented oscillating dipole – embedded in a layered medium, assuming that the layers composing the medium are affected by inhomogeneity of refractive index and interface roughness. The model puts a method forward for calculating the angular distribution of the light intensity that is radiated in the far field. Several computer simulations of such a point source located in the centre of a 15-layer thin-film Fabry-Pérot filter are shown and the results discussed.
Si propone un modello teorico per una sorgente luminosa puntiforme (trattata come un dipolo oscillante con orientamento casuale) immensa in un mezzo striato, supponendo che gli strati che compongono il mezzo siano affetti da disomogeneità dell’indice di rifrazione e rugosità alle interfacce. Il modello suggerisce un metodo per calcolare la distribuzione angolare d’intensità luminosa che viene irraggiata in campo lontano. Sono mostrate e discusse alcune simulazioni di una sorgente puntiforme di tale tipo posta al centro di un filtro Fabry-Pérot a film sottile formato da 15 strati.
Influence of refractive index inhomogeneity and interface roughness on the radiating properties of a point source in a layered medium
Nichelatti, Enrico
2014-09-01
Abstract
A theoretical model is proposed for a point light source – dealt with as a randomly-oriented oscillating dipole – embedded in a layered medium, assuming that the layers composing the medium are affected by inhomogeneity of refractive index and interface roughness. The model puts a method forward for calculating the angular distribution of the light intensity that is radiated in the far field. Several computer simulations of such a point source located in the centre of a 15-layer thin-film Fabry-Pérot filter are shown and the results discussed.File | Dimensione | Formato | |
---|---|---|---|
RT-2014-15-ENEA.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.