LHC confirmed many theoretical predictions, dating back to the second half of the 20th century. In addition to confirming the most striking one, namely proving the existence of the Brout-Englert-Higgs (BEH) boson, others – even though with minor emphasis from the media, because accurately appreciated only by experts – have been completing a theoretical framework, consolidated since the ’70 and ’80 years. In particular, the existence of baryons made up of 2 heavy quarks has been confirmed by the analysis of experimental data and discussion about producing baryons with a possible even larger mass has just started. The production mechanism is characterized by a process that implies the “fusion” of two baryons with only one heavy quark, the formation of an exotic state with six quarks, then the associated decay into a nucleon plus a baryon with two heavy quarks and a significant energy release, due to the mass difference between initial particles and those produced from the decay. Since some speculations raised on exploiting such a new source of energy, we will discuss whether there are conditions to effectively guarantee such a use.

LHC ha confermato molte previsioni teoriche, che datavano alla seconda metà del 900. A parte la più eclatante, ovvero la prova dell’esistenza del bosone BEH (Brout-Englert-Higgs), altre, se pure con minore enfasi mediatica perché note solo agli addetti ai lavori, stanno completando un quadro teorico che si era consolidato tra gli anni 70 e 80. In particolare l’esistenza di barioni costituiti da 2 quark pesanti, sono stati confermati dall’analisi dei dati sperimentali e si è cominciato a discutere della possibile produzione di barioni di massa ancora maggiore. Il meccanismo di produzione è caratterizzato da un processo che implica la “fusione” di due barioni con un solo quark pesante, la formazione di uno stato esotico a sei quark, il relativo decadimento in un nucleone, un barione contenente due quark pesanti e un significativo rilascio di energia, dovuto alla differenza di massa tra le particelle iniziali e quelle di decadimento. Poiché si è speculato su un possibile uso di tale“nuova fonte” di energia, discuteremo se esistano le condizioni che ne garantiscano un effettivo utilizzo.

Fusione dei quark pesanti. Una nuova e più efficace sorgente di energia?

Tuccillo, A.;Nguyen, F.;Dattoli, G.
2018

Abstract

LHC ha confermato molte previsioni teoriche, che datavano alla seconda metà del 900. A parte la più eclatante, ovvero la prova dell’esistenza del bosone BEH (Brout-Englert-Higgs), altre, se pure con minore enfasi mediatica perché note solo agli addetti ai lavori, stanno completando un quadro teorico che si era consolidato tra gli anni 70 e 80. In particolare l’esistenza di barioni costituiti da 2 quark pesanti, sono stati confermati dall’analisi dei dati sperimentali e si è cominciato a discutere della possibile produzione di barioni di massa ancora maggiore. Il meccanismo di produzione è caratterizzato da un processo che implica la “fusione” di due barioni con un solo quark pesante, la formazione di uno stato esotico a sei quark, il relativo decadimento in un nucleone, un barione contenente due quark pesanti e un significativo rilascio di energia, dovuto alla differenza di massa tra le particelle iniziali e quelle di decadimento. Poiché si è speculato su un possibile uso di tale“nuova fonte” di energia, discuteremo se esistano le condizioni che ne garantiscano un effettivo utilizzo.
LHC confirmed many theoretical predictions, dating back to the second half of the 20th century. In addition to confirming the most striking one, namely proving the existence of the Brout-Englert-Higgs (BEH) boson, others – even though with minor emphasis from the media, because accurately appreciated only by experts – have been completing a theoretical framework, consolidated since the ’70 and ’80 years. In particular, the existence of baryons made up of 2 heavy quarks has been confirmed by the analysis of experimental data and discussion about producing baryons with a possible even larger mass has just started. The production mechanism is characterized by a process that implies the “fusion” of two baryons with only one heavy quark, the formation of an exotic state with six quarks, then the associated decay into a nucleon plus a baryon with two heavy quarks and a significant energy release, due to the mass difference between initial particles and those produced from the decay. Since some speculations raised on exploiting such a new source of energy, we will discuss whether there are conditions to effectively guarantee such a use.
Fusione;Quark pesanti;Barioni;Energia di legame
File in questo prodotto:
File Dimensione Formato  
RT-2018-08-ENEA.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/6821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact