In this work, a multi-variable multi-objective methodology aimed to perform the validation of the thermodynamic model has been applied to the Capstone C30 micro gas turbine. The methodology is based on a genetic optimization algorithm, where decision variables and objectives are set depending on available experimental data. The results of the studied case highlight the capability of the method to point out some experimental data inconsistencies and that it can lead to a consistency thermodynamic reconstruction of the micro turbine behaviour.

Thermodynamic model validation of Capstone C30 micro gas turbine

Sannino R.
2017-01-01

Abstract

In this work, a multi-variable multi-objective methodology aimed to perform the validation of the thermodynamic model has been applied to the Capstone C30 micro gas turbine. The methodology is based on a genetic optimization algorithm, where decision variables and objectives are set depending on available experimental data. The results of the studied case highlight the capability of the method to point out some experimental data inconsistencies and that it can lead to a consistency thermodynamic reconstruction of the micro turbine behaviour.
2017
Experimental validation
measurement reliability
micro Gas Turbine
Multi-objective optimization
Thermodynamic analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/70007
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
social impact