Energetic particles present in tokamak machines can drive through resonant wave-particle interaction different plasma instabilities, e.g Alfvén modes and energetic particle-driven geodesic acoustic modes (EGAMs). While the former are potentially detrimental as they can enhance the energetic particle transport and damage the machine wall, the latter are axisymmetric, possibly benign modes that can act to regulate turbulence. A unique scenario, the so-called NLED-AUG case, has been developed in ASDEX Upgrade by tuning the plasma parameters so that the energetic particle kinetic energy is 100 times higher than that of the background plasma, like in ITER. An intense energetic particle-driven activity is observed, most prominently various Alfvén mode bursts triggering chirping EGAMs. The present work reports studies on the Alfvén mode and EGAM dynamics showing, for the first time, many toroidal mode gyrokinetic simulations with ORB5 where the NLED-AUG case scenario is considered. We study the mode dynamics modelling the energetic particles with different equilibrium distribution functions, such as: isotropic slowing-down, double-bump-on-tail and equivalent Maxwellian. We retain, at the beginning, the nonlinearities only in the energetic particle dynamics. Later, also the background plasma species nonlinearities are taken into account.

Gyrokinetic modelling of the Alfvén mode and EGAM activity in ASDEX Upgrade

Vlad G.;
2022-01-01

Abstract

Energetic particles present in tokamak machines can drive through resonant wave-particle interaction different plasma instabilities, e.g Alfvén modes and energetic particle-driven geodesic acoustic modes (EGAMs). While the former are potentially detrimental as they can enhance the energetic particle transport and damage the machine wall, the latter are axisymmetric, possibly benign modes that can act to regulate turbulence. A unique scenario, the so-called NLED-AUG case, has been developed in ASDEX Upgrade by tuning the plasma parameters so that the energetic particle kinetic energy is 100 times higher than that of the background plasma, like in ITER. An intense energetic particle-driven activity is observed, most prominently various Alfvén mode bursts triggering chirping EGAMs. The present work reports studies on the Alfvén mode and EGAM dynamics showing, for the first time, many toroidal mode gyrokinetic simulations with ORB5 where the NLED-AUG case scenario is considered. We study the mode dynamics modelling the energetic particles with different equilibrium distribution functions, such as: isotropic slowing-down, double-bump-on-tail and equivalent Maxwellian. We retain, at the beginning, the nonlinearities only in the energetic particle dynamics. Later, also the background plasma species nonlinearities are taken into account.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/72508
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact