The fundamental solution of the fractional diffusion equation of distributed order in time (usually adopted for modelling sub-diffusion processes) is obtained based on its Mellin-Barnes integral representation. Such solution is proved to be related via a Laplace-type integral to the Fox-Wright functions. A series expansion is also provided in order to point out the distribution of time-scales related to the distribution of the fractional orders. The results of the time fractional diffusion equation of a single order are also recalled and then re-obtained from the general theory.
The Role of the Fox-Wright Functions in Fractional Sub-Diffusion of Distributed Order
2007-10-15
Abstract
The fundamental solution of the fractional diffusion equation of distributed order in time (usually adopted for modelling sub-diffusion processes) is obtained based on its Mellin-Barnes integral representation. Such solution is proved to be related via a Laplace-type integral to the Fox-Wright functions. A series expansion is also provided in order to point out the distribution of time-scales related to the distribution of the fractional orders. The results of the time fractional diffusion equation of a single order are also recalled and then re-obtained from the general theory.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.