In this brief review, we discuss the viability of a multi-dimensional geometrical theory with one compactified dimension. We discuss the case of a Kaluza-Klein (KK) fifth-dimensional theory, addressing the problem by an overview of the astrophysical phenomenology associated with this five-dimensional (5D) theory. By comparing the predictions of our model with the features of the ordinary (four-dimensional (4D)) Relativistic Astrophysics, we highlight some small but finite discrepancies, expectably detectible from the observations. We consider a class of static, vacuum solutions of free electromagnetic KK equations with three-dimensional (3D) spherical symmetry. We explore the stability of the particle dynamics in these spacetimes, the construction of self-gravitating stellar models and the emission spectrum generated by a charged particle falling on this stellar object. The matter dynamics in these geometries has been treated by a multipole approach adapted to the geometric theory with a compactified dimension. © World Scientific Publishing Company.

Astrophysical evidence for an extra dimension: Phenomenology of a Kaluza-Klein theory

Montani, G
2013

Abstract

In this brief review, we discuss the viability of a multi-dimensional geometrical theory with one compactified dimension. We discuss the case of a Kaluza-Klein (KK) fifth-dimensional theory, addressing the problem by an overview of the astrophysical phenomenology associated with this five-dimensional (5D) theory. By comparing the predictions of our model with the features of the ordinary (four-dimensional (4D)) Relativistic Astrophysics, we highlight some small but finite discrepancies, expectably detectible from the observations. We consider a class of static, vacuum solutions of free electromagnetic KK equations with three-dimensional (3D) spherical symmetry. We explore the stability of the particle dynamics in these spacetimes, the construction of self-gravitating stellar models and the emission spectrum generated by a charged particle falling on this stellar object. The matter dynamics in these geometries has been treated by a multipole approach adapted to the geometric theory with a compactified dimension. © World Scientific Publishing Company.
dimensional compactification;emission spectra;Kaluza-Klein theory;multipole expansion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/1254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact