Mutations in DNA repair pathways are frequent in human cancers. Hence, gaining insights into the interaction of DNA repair genes is key to development of novel tumor-specific treatment strategies. In this study, we tested the functional relationship in development and oncogenesis between the homologous recombination (HR) factor Rad54 and Parp-1, a nuclear enzyme that plays a multifunctional role in DNA damage signaling and repair. We introduced single or combined Rad54 and Parp- 1 inactivating germline mutations in Ptc1 heterozygous mice, a well-characterized model of medulloblastoma, the most common malignant pediatric brain tumor. Our study reveals that combined inactivation of Rad54 and Parp-1 causes a marked growth delay culminating in perinatal lethality, providing for the first time evidence of synthetic lethal interactions between Rad54 and Parp-1 in vivo. Although the double mutation hampered investigation of Rad54 and Parp-1 interactions in cerebellum tumorigenesis, insights were gained by showing accumulation of endogenous DNA damage and increased apoptotic rate in granule cell precursors (GCPs). A networkbased approach to detect differential expression of DNA repair genes in the cerebellum revealed perturbation of p53 signaling in Rad54-/-/Parp-1-/-/Ptc1+/-, and MEFs from combined Rad54/Parp-1 mutants showed p53/p21-dependent typical senescent features. These findings help elucidate the genetic interplay between Rad54 and Parp-1 by suggesting that p53/p21-mediated apoptosis and/or senescence may be involved in synthetic lethal interactions occurring during development and inhibition of tumor growth. © Tanori et al.

Synthetic lethal genetic interactions between Rad54 and PARP-1 in mouse development and oncogenesis

Pazzaglia, S.;Saran, A.;Mancuso, M.;Pannicelli, A.;Tanno, B.;Antonelli, F.;Pasquali, E.;Leonardi, S.;Casciati, A.;Tanori, M.
2017

Abstract

Mutations in DNA repair pathways are frequent in human cancers. Hence, gaining insights into the interaction of DNA repair genes is key to development of novel tumor-specific treatment strategies. In this study, we tested the functional relationship in development and oncogenesis between the homologous recombination (HR) factor Rad54 and Parp-1, a nuclear enzyme that plays a multifunctional role in DNA damage signaling and repair. We introduced single or combined Rad54 and Parp- 1 inactivating germline mutations in Ptc1 heterozygous mice, a well-characterized model of medulloblastoma, the most common malignant pediatric brain tumor. Our study reveals that combined inactivation of Rad54 and Parp-1 causes a marked growth delay culminating in perinatal lethality, providing for the first time evidence of synthetic lethal interactions between Rad54 and Parp-1 in vivo. Although the double mutation hampered investigation of Rad54 and Parp-1 interactions in cerebellum tumorigenesis, insights were gained by showing accumulation of endogenous DNA damage and increased apoptotic rate in granule cell precursors (GCPs). A networkbased approach to detect differential expression of DNA repair genes in the cerebellum revealed perturbation of p53 signaling in Rad54-/-/Parp-1-/-/Ptc1+/-, and MEFs from combined Rad54/Parp-1 mutants showed p53/p21-dependent typical senescent features. These findings help elucidate the genetic interplay between Rad54 and Parp-1 by suggesting that p53/p21-mediated apoptosis and/or senescence may be involved in synthetic lethal interactions occurring during development and inhibition of tumor growth. © Tanori et al.
Medulloblastoma;Apoptosis;Senescence;Expression profiles;Cerebellum
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/1590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact