The laser induced plasma spectroscopy was applied on particles attached on substrate represented by a silica wafer covered with a thin oil film. The substrate itself weakly interacts with a ns Nd:YAG laser (1064 nm) while presence of particles strongly enhances the plasma emission, here detected by a compact spectrometer array. Variations of the sample mass from one laser spot to another exceed one order of magnitude, as estimated by on-line photography and the initial image calibration for different sample loadings. Consequently, the spectral lines from particles show extreme intensity fluctuations from one sampling point to another, between the detection threshold and the detector's saturation in some cases. In such conditions the common calibration approach based on the averaged spectra, also when considering ratios of the element lines i.e. concentrations, produces errors too large for measuring the sample compositions. On the other hand, intensities of an analytical and the reference line from single shot spectra are linearly correlated. The corresponding slope depends on the concentration ratio and it is weakly sensitive to fluctuations of the plasma temperature inside the data set. A use of the slopes for constructing the calibration graphs significantly reduces the error bars but it does not eliminate the point scattering caused by the matrix effect, which is also responsible for large differences in the average plasma temperatures among the samples. Well aligned calibration points were obtained after identifying the couples of transitions less sensitive to variations of the plasma temperature, and this was achieved by simple theoretical simulations. Such selection of the analytical lines minimizes the matrix effect, and together with the chosen calibration approach, allows to measure the relative element concentrations even in highly unstable laser induced plasmas. © 2017 Elsevier B.V.

Calibration approach for extremely variable laser induced plasmas and a strategy to reduce the matrix effect in general

De Ninno, A.;Lazic, V.
2017

Abstract

The laser induced plasma spectroscopy was applied on particles attached on substrate represented by a silica wafer covered with a thin oil film. The substrate itself weakly interacts with a ns Nd:YAG laser (1064 nm) while presence of particles strongly enhances the plasma emission, here detected by a compact spectrometer array. Variations of the sample mass from one laser spot to another exceed one order of magnitude, as estimated by on-line photography and the initial image calibration for different sample loadings. Consequently, the spectral lines from particles show extreme intensity fluctuations from one sampling point to another, between the detection threshold and the detector's saturation in some cases. In such conditions the common calibration approach based on the averaged spectra, also when considering ratios of the element lines i.e. concentrations, produces errors too large for measuring the sample compositions. On the other hand, intensities of an analytical and the reference line from single shot spectra are linearly correlated. The corresponding slope depends on the concentration ratio and it is weakly sensitive to fluctuations of the plasma temperature inside the data set. A use of the slopes for constructing the calibration graphs significantly reduces the error bars but it does not eliminate the point scattering caused by the matrix effect, which is also responsible for large differences in the average plasma temperatures among the samples. Well aligned calibration points were obtained after identifying the couples of transitions less sensitive to variations of the plasma temperature, and this was achieved by simple theoretical simulations. Such selection of the analytical lines minimizes the matrix effect, and together with the chosen calibration approach, allows to measure the relative element concentrations even in highly unstable laser induced plasmas. © 2017 Elsevier B.V.
Calibration;Particles;Matrix effect;Plasma;Laser induced breakdown spectroscopy LIBS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/1711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact