We re-analyze the physical conditions for Magneto-rotational Instability (MRI) within a steady axisymmetric stratified disk of plasma, in order to account for the so-called isorotation theory (the spatial profile of differential angular velocity depends on the magnetic flux surface). We develop the study of linear stability around an astrophysical background configuration, following the original derivation in [15], but implementing the isorotation condition as the orthogonality between the background magnetic field and the angular velocity gradient. We demonstrate that a dependence on the background magnetic field direction is restored in the dispersion relation and, hence, the emergence of MRI is also influenced by field orientation. © 2017 The Author(s)

Revised conditions for MRI due to isorotation theorem

Montani, G.
2017

Abstract

We re-analyze the physical conditions for Magneto-rotational Instability (MRI) within a steady axisymmetric stratified disk of plasma, in order to account for the so-called isorotation theory (the spatial profile of differential angular velocity depends on the magnetic flux surface). We develop the study of linear stability around an astrophysical background configuration, following the original derivation in [15], but implementing the isorotation condition as the orthogonality between the background magnetic field and the angular velocity gradient. We demonstrate that a dependence on the background magnetic field direction is restored in the dispersion relation and, hence, the emergence of MRI is also influenced by field orientation. © 2017 The Author(s)
Magnetohydronamics (MHD)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/1878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact