Nanocrystalline samples of Mg-Fe-H were synthesized by mixing of MgH2 and Fe in a 2:1 molar ratio by hand grinding (MIX) or by reactive ball milling (RBM) in a high-pressure vial. Hydrogenation procedures were performed at various temperatures in order to promote the full conversion to Mg2FeH6. Pure Mg2FeH6 was obtained only for the RBM material cycled at 485°C. This extremely pure Mg2FeH6 sample was investigated as an anode for lithium batteries. The reversible electrochemical lithium incorporation and de-incorporation reactions were analyzed in view of thermodynamic evaluations, potentiodynamic cycling with galvanostatic acceleration (PCGA), and ex situ X-ray Diffraction (XRD) tests. The Mg2FeH6 phase underwent a conversion reaction; the Mg metal produced in this reaction was alloyed upon further reduction. The back conversion reaction in a lithium cell was here demonstrated for the first time in a stoichiometric extremely pure Mg2FeH6 phase: the reversibility of the overall conversion process was only partial with an overall coulombic yield of 17% under quasi-thermodynamic control. Ex situ XRD analysis highlighted that the material after a full discharge/charge in a lithium cell was strongly amorphized. Under galvanostatic cycling at C/20, C/5 and 1 C, the Mg2FeH6 electrodes were able to supply a reversible capacity with increasing coulombic efficiency and decreasing specific capacity as the current rate increased. © 2018 by the authors.

Extremely pure Mg2FeH6 as a negative electrode for lithium batteries

Silvestri, L.;Reale, P.
2018-01-01

Abstract

Nanocrystalline samples of Mg-Fe-H were synthesized by mixing of MgH2 and Fe in a 2:1 molar ratio by hand grinding (MIX) or by reactive ball milling (RBM) in a high-pressure vial. Hydrogenation procedures were performed at various temperatures in order to promote the full conversion to Mg2FeH6. Pure Mg2FeH6 was obtained only for the RBM material cycled at 485°C. This extremely pure Mg2FeH6 sample was investigated as an anode for lithium batteries. The reversible electrochemical lithium incorporation and de-incorporation reactions were analyzed in view of thermodynamic evaluations, potentiodynamic cycling with galvanostatic acceleration (PCGA), and ex situ X-ray Diffraction (XRD) tests. The Mg2FeH6 phase underwent a conversion reaction; the Mg metal produced in this reaction was alloyed upon further reduction. The back conversion reaction in a lithium cell was here demonstrated for the first time in a stoichiometric extremely pure Mg2FeH6 phase: the reversibility of the overall conversion process was only partial with an overall coulombic yield of 17% under quasi-thermodynamic control. Ex situ XRD analysis highlighted that the material after a full discharge/charge in a lithium cell was strongly amorphized. Under galvanostatic cycling at C/20, C/5 and 1 C, the Mg2FeH6 electrodes were able to supply a reversible capacity with increasing coulombic efficiency and decreasing specific capacity as the current rate increased. © 2018 by the authors.
2018
Mg2FeH6;Reactive ball milling;Discharge capacity;High temperature hydrogenation;Pressure-composition isotherms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/1890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact