The duration of chorus elements is an important parameter to understand chorus excitation and to quantify the effects of nonlinear wave-particle interactions on energetic electron dynamics. In this work, we analyze the duration of rising tone chorus elements statistically using Van Allen Probes data. We present the distribution of chorus element duration (τ) as a function of magnetic local time (MLT) and the geomagnetic activity level characterized by auroral electrojet (AE) index. We show that the typical value of τ for nightside and dawnside is about 0.12 s, smaller than that for dayside and duskside by about a factor of 2 to 4. Using a previously developed hybrid code, DAWN, we suggest that the background magnetic field inhomogeneity might be an important factor in controlling the chorus element duration. We also report that τ is larger during quiet times and shorter during moderate and active periods; this result is consistent with the MLT dependence of τ and the occurrence pattern of chorus waves at different levels of geomagnetic activity. We then investigate the correlation between τ and the frequency chirping rate (Γ). We show that, from observation, τ scales with Γ as (Formula presented.), suggesting that statistically the frequency range of chorus elements (τΓ) should be roughly the same for different elements. These findings should be useful to the further development of a theoretical model of chorus excitation and to the quantification of nonlinear wave-particle interactions on energetic electron dynamics. ©2017. American Geophysical Union. All Rights Reserved.

Analysis of the Duration of Rising Tone Chorus Elements

Zonca, F.
2017-01-01

Abstract

The duration of chorus elements is an important parameter to understand chorus excitation and to quantify the effects of nonlinear wave-particle interactions on energetic electron dynamics. In this work, we analyze the duration of rising tone chorus elements statistically using Van Allen Probes data. We present the distribution of chorus element duration (τ) as a function of magnetic local time (MLT) and the geomagnetic activity level characterized by auroral electrojet (AE) index. We show that the typical value of τ for nightside and dawnside is about 0.12 s, smaller than that for dayside and duskside by about a factor of 2 to 4. Using a previously developed hybrid code, DAWN, we suggest that the background magnetic field inhomogeneity might be an important factor in controlling the chorus element duration. We also report that τ is larger during quiet times and shorter during moderate and active periods; this result is consistent with the MLT dependence of τ and the occurrence pattern of chorus waves at different levels of geomagnetic activity. We then investigate the correlation between τ and the frequency chirping rate (Γ). We show that, from observation, τ scales with Γ as (Formula presented.), suggesting that statistically the frequency range of chorus elements (τΓ) should be roughly the same for different elements. These findings should be useful to the further development of a theoretical model of chorus excitation and to the quantification of nonlinear wave-particle interactions on energetic electron dynamics. ©2017. American Geophysical Union. All Rights Reserved.
2017
DAWN;frequency chirping rate;Van Allen Probes;chorus element duration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/1917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact