Industrial systems management is nowadays increasingly devoted to improve the control of most critical production aspects. In this context, the performance of all the systems involved in production processes have to be measured and analysed in order to get better insights in terms of potential production and quality improvements as well as energy savings. In order to evaluate the performance of a certain system, a possible and effective way is to compare it with data from similar systems, thus to conduct a benchmark analysis. In the area of energy management, although the compressed air system (CAS) is one of the most important and energy consuming services within industrial plants, enterprises often have difficulties understanding and appreciating the entity of potential benefits coming from the improvement of its energy efficiency. The present paper aims at developing a new benchmark analysis for compressed air systems in industrial plants. The proposed methodology starts from the KPIs (Key Performance Indicators) already available in the scientific literature for CASs’ energy performance and is mainly based on the analysis of a huge real dataset collected from over 15,000 energy audits made on a wide range of different companies, all related to produced quantity of compressed air and energy consumed by CASs. Collected data present some limitations and related improvements and corrective actions have been undertaken and are presented in the followings. Data analyses have been followed by complementary surveys regarding compressed air systems’ use, maintenance and monitoring practices performed within several Italian enterprises and aimed at enhancing and creating a more reliable baseline for benchmarking. © 2018 Elsevier Ltd

Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms

Bonfà, F.
2018-01-01

Abstract

Industrial systems management is nowadays increasingly devoted to improve the control of most critical production aspects. In this context, the performance of all the systems involved in production processes have to be measured and analysed in order to get better insights in terms of potential production and quality improvements as well as energy savings. In order to evaluate the performance of a certain system, a possible and effective way is to compare it with data from similar systems, thus to conduct a benchmark analysis. In the area of energy management, although the compressed air system (CAS) is one of the most important and energy consuming services within industrial plants, enterprises often have difficulties understanding and appreciating the entity of potential benefits coming from the improvement of its energy efficiency. The present paper aims at developing a new benchmark analysis for compressed air systems in industrial plants. The proposed methodology starts from the KPIs (Key Performance Indicators) already available in the scientific literature for CASs’ energy performance and is mainly based on the analysis of a huge real dataset collected from over 15,000 energy audits made on a wide range of different companies, all related to produced quantity of compressed air and energy consumed by CASs. Collected data present some limitations and related improvements and corrective actions have been undertaken and are presented in the followings. Data analyses have been followed by complementary surveys regarding compressed air systems’ use, maintenance and monitoring practices performed within several Italian enterprises and aimed at enhancing and creating a more reliable baseline for benchmarking. © 2018 Elsevier Ltd
2018
Energy benchmarking;Compressed air systems;Directive 2012/27/EU;Energy efficiency
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2014
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact