The present work presents a review of the asymptotic behaviour of the solutions of a particular class of nonlinear Leslie matrices that aim at simulating the effects of stressors on biological populations and that can serve as examples for the development of models for environmental assessment. The models account for the biotic potential growth of the population and for the environmental resistance caused by limiting factors and competition processes. The stability of the model solutions, the existence of cycles, the emergence of chaotic behaviours in the population dynamics are discussed in relation to the intensity and the duration of the stress. The conditions for the survival of populations subjected to chronic stress and for population recovery once the stress effects cease are investigated. © 2018 Taru Publications.

Nonlinear Leslie models for the assessment of the effects of stressors on the development of wild populations: reviewing of the basic properties

2018-01-01

Abstract

The present work presents a review of the asymptotic behaviour of the solutions of a particular class of nonlinear Leslie matrices that aim at simulating the effects of stressors on biological populations and that can serve as examples for the development of models for environmental assessment. The models account for the biotic potential growth of the population and for the environmental resistance caused by limiting factors and competition processes. The stability of the model solutions, the existence of cycles, the emergence of chaotic behaviours in the population dynamics are discussed in relation to the intensity and the duration of the stress. The conditions for the survival of populations subjected to chronic stress and for population recovery once the stress effects cease are investigated. © 2018 Taru Publications.
2018
Alle's principle;biotic potential;nonlinear Leslie models;environmental stressor effects;environmental resistance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact