The nuclear Overhauser enhancement (NOE) is a powerful tool of NMR spectroscopy extensively used to gain structural information in ionic liquids (ILs). A general model for the distance dependence of intermolecular NOE in ILs was recently proposed showing that NOE spots beyond the first solvation shell and accounts for long-range effects. This conclusion prompted for a deep rethinking of the NOE data interpretation in ILs. In this paper we present an extensive and quantitative study of N-propyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI), the homologue with bis(fluorosulfonyl)imide (PYR13FSI), and their mixtures with LiTFSI based on {1H-19F} and {1H-7Li}NOE correlation experiments (HOESY). The former is mainly tuned on long-range interactions, the latter on short-range ones, due to the small and large Larmor frequency differences of the involved nuclei. The collected data are discussed in two different way: long-range {1H-19F}NOEs spot on the polar/apolar domains within the ILs, whereas short-range (e.g. regarding the first coordination shell) {1H-7Li}NOEs describe the contacts between first neighbors, with interesting correlation with the distances' statistics derived by crystallographic data of related systems. © 2015 Elsevier B.V.All rights reserved.
Multiple points of view of heteronuclear NOE: Long range vs short range contacts in pyrrolidinium based ionic liquids in the presence of Li salts
Appetecchi, G.B.
2015-01-01
Abstract
The nuclear Overhauser enhancement (NOE) is a powerful tool of NMR spectroscopy extensively used to gain structural information in ionic liquids (ILs). A general model for the distance dependence of intermolecular NOE in ILs was recently proposed showing that NOE spots beyond the first solvation shell and accounts for long-range effects. This conclusion prompted for a deep rethinking of the NOE data interpretation in ILs. In this paper we present an extensive and quantitative study of N-propyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI), the homologue with bis(fluorosulfonyl)imide (PYR13FSI), and their mixtures with LiTFSI based on {1H-19F} and {1H-7Li}NOE correlation experiments (HOESY). The former is mainly tuned on long-range interactions, the latter on short-range ones, due to the small and large Larmor frequency differences of the involved nuclei. The collected data are discussed in two different way: long-range {1H-19F}NOEs spot on the polar/apolar domains within the ILs, whereas short-range (e.g. regarding the first coordination shell) {1H-7Li}NOEs describe the contacts between first neighbors, with interesting correlation with the distances' statistics derived by crystallographic data of related systems. © 2015 Elsevier B.V.All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.