The two-dimensional global stability and mode structures of high-n beta-induced Alfvén eigenmodes excited by energetic ions in tokamaks are examined both analytically and numerically, employing the WKB-ballooning mode representation along with the generalized fishbone like dispersion relation. Here, n 蠑 1 is the toroidal mode number. Our results indicate that (i) the lowest radial bound state corresponds to the most unstable eigenmode, and (ii) the anti-Hermitian contributions due to wave-energetic particle resonance give rise to the twisting radial mode structures. © 2015 AIP Publishing LLC.

Global theory of beta-induced Alfvén eigenmode excited by energetic ions

Zonca, F.
2015

Abstract

The two-dimensional global stability and mode structures of high-n beta-induced Alfvén eigenmodes excited by energetic ions in tokamaks are examined both analytically and numerically, employing the WKB-ballooning mode representation along with the generalized fishbone like dispersion relation. Here, n 蠑 1 is the toroidal mode number. Our results indicate that (i) the lowest radial bound state corresponds to the most unstable eigenmode, and (ii) the anti-Hermitian contributions due to wave-energetic particle resonance give rise to the twisting radial mode structures. © 2015 AIP Publishing LLC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact