The classical boundary layer problem formulated by Heinrich Blasius more than a century ago is revisited, with the purpose of deriving simple and accurate analytical approximations to its solution. This is achieved through the combined use of a generalized Padé approach and of an integral iteration scheme devised by Hermann Weyl. The iteration scheme is also used to derive very accurate bounds for the value of the second derivative of the Blasius function at the origin, which plays a crucial role in this problem. © 2015 Elsevier B.V. All rights reserved.

Simple analytic approximations for the Blasius problem

Iacono, R.
2015

Abstract

The classical boundary layer problem formulated by Heinrich Blasius more than a century ago is revisited, with the purpose of deriving simple and accurate analytical approximations to its solution. This is achieved through the combined use of a generalized Padé approach and of an integral iteration scheme devised by Hermann Weyl. The iteration scheme is also used to derive very accurate bounds for the value of the second derivative of the Blasius function at the origin, which plays a crucial role in this problem. © 2015 Elsevier B.V. All rights reserved.
Generalized Padé approximants;Boundary layer;Integral iteration scheme;Blasius equation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact