The interface of biological molecules with inorganic surfaces has been the subject of several recent studies. Experimentally some amino acids are evidenced to play a critical role in the adhesion and selectivity on oxide surfaces; however, detailed information on how the water molecules on the hydrated surface are able to mediate the adsorption is still missing. Accurate total energy ab initio calculations based on dispersion-corrected density functional theory have been performed to investigate the adsorption of selected amino acids on the hydrated ZnO(101¯0) surface, and the results are presented and discussed in this paper. We have also investigated the role played by water in the determination of the most energetically favorable adsorption configurations of the selected amino acids. We have found that for some amino acids the most energetically favorable configurations involve the deprotonation of the molecule if the water screening is not effective. © 2015 American Chemical Society.

Adsorption of Modified Arg, Lys, Asp, and Gln to Dry and Hydrated ZnO Surface: A Density Functional Theory Study

Celino, M.;Arcangeli, C.;Buonocore, F.
2015-01-01

Abstract

The interface of biological molecules with inorganic surfaces has been the subject of several recent studies. Experimentally some amino acids are evidenced to play a critical role in the adhesion and selectivity on oxide surfaces; however, detailed information on how the water molecules on the hydrated surface are able to mediate the adsorption is still missing. Accurate total energy ab initio calculations based on dispersion-corrected density functional theory have been performed to investigate the adsorption of selected amino acids on the hydrated ZnO(101¯0) surface, and the results are presented and discussed in this paper. We have also investigated the role played by water in the determination of the most energetically favorable adsorption configurations of the selected amino acids. We have found that for some amino acids the most energetically favorable configurations involve the deprotonation of the molecule if the water screening is not effective. © 2015 American Chemical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact