Aims Oxidative stress and inflammation are always associated. Appropriate management of oxidative mediators may represent a therapeutic strategy to reduce inflammation, and use of antioxidant can be protective against inflammatory diseases. Glycyrrhizin (GL) plays an anti-inflammatory and antioxidant effect by inhibiting high mobility group box 1 (HMGB1) or 11-β-hydroxysteroid dehydrogenase type II (11βHSD2) enzyme. In this study, the potential role of dipotassium glycyrrhizate (DPG), a salt of GL, to reduce oxidative stress in intestinal inflammatory condition was investigated in vivo and the mechanism of action of DPG was studied in vitro. Results In a colitis mouse model DPG affected oxidative stress reducing iNOS and COX-2 expression, as well as NO and PGE2 levels. By means of LPS-stimulated macrophages we found that DPG inhibited the expression of pro-inflammatory cytokines and reduced iNOS and COX-2 expression in a time dependent manner, through two different ways of signal. DPG reduced, at a later time, both iNOS and COX-2, through a mechanism HMGB1-dependent, and at an earlier time only COX-2, through a mechanism AMP-activated kinase (AMPK)-phosphorylation-mediated. Conclusion DPG has a protective effect on colitis and inflammation through the inhibition of oxidative stress. This study clarifies the two-ways mechanism by which DPG inhibits iNOS and COX-2 during inflammation and demonstrates for the first time that AMPK is a target of DPG. Uncovering this mechanism is significant to clarify the relationship between energy homeostasis and anti-oxidative responses and suggests that DPG could play a relevant role in the development of new therapy against inflammatory diseases associated to oxidative stress. © 2015 Elsevier Inc. All rights reserved.

Dipotassium glycyrrhizate via HMGB1 or AMPK signaling suppresses oxidative stress during intestinal inflammation

Stronati, L.;Negroni, A.;Pierdomenico, M.;Vitali, R.
2015-01-01

Abstract

Aims Oxidative stress and inflammation are always associated. Appropriate management of oxidative mediators may represent a therapeutic strategy to reduce inflammation, and use of antioxidant can be protective against inflammatory diseases. Glycyrrhizin (GL) plays an anti-inflammatory and antioxidant effect by inhibiting high mobility group box 1 (HMGB1) or 11-β-hydroxysteroid dehydrogenase type II (11βHSD2) enzyme. In this study, the potential role of dipotassium glycyrrhizate (DPG), a salt of GL, to reduce oxidative stress in intestinal inflammatory condition was investigated in vivo and the mechanism of action of DPG was studied in vitro. Results In a colitis mouse model DPG affected oxidative stress reducing iNOS and COX-2 expression, as well as NO and PGE2 levels. By means of LPS-stimulated macrophages we found that DPG inhibited the expression of pro-inflammatory cytokines and reduced iNOS and COX-2 expression in a time dependent manner, through two different ways of signal. DPG reduced, at a later time, both iNOS and COX-2, through a mechanism HMGB1-dependent, and at an earlier time only COX-2, through a mechanism AMP-activated kinase (AMPK)-phosphorylation-mediated. Conclusion DPG has a protective effect on colitis and inflammation through the inhibition of oxidative stress. This study clarifies the two-ways mechanism by which DPG inhibits iNOS and COX-2 during inflammation and demonstrates for the first time that AMPK is a target of DPG. Uncovering this mechanism is significant to clarify the relationship between energy homeostasis and anti-oxidative responses and suggests that DPG could play a relevant role in the development of new therapy against inflammatory diseases associated to oxidative stress. © 2015 Elsevier Inc. All rights reserved.
2015
Chemical compound studied in this article Dipotassium glycyrrhizate (PubChem CID: 656852)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact