The magnetism of graphone, a single-side-hydrogenated graphene derivative, has been related to the localized and unpaired p-electrons associated with the unhydrogenated carbon atoms. In the present density functional theory study, the effects the adhesion to either Cu(111) or α-quartz (0001) surface on the magnetic properties of graphone have been investigated. The total magnetization of the graphone adsorbed to copper and quartz surface is reduced by four and two times, respectively, with respect to the isolated graphone. We have shown there is electronic charge transfer from surface towards three-fold coordinated C atoms of graphone, but the main role in the partial magnetism quenching is played by bond formation and the consequent electron pairing of p-electrons. The critical temperature has been investigated on the basis of the mean field theory to evaluate the stability of the magnetism at ordinary temperature. © 2015 Elsevier B.V. All rights reserved.

Effects of the substrate on graphone magnetism: A density functional theory study

Lisi, N.;Buonocore, F.
2016

Abstract

The magnetism of graphone, a single-side-hydrogenated graphene derivative, has been related to the localized and unpaired p-electrons associated with the unhydrogenated carbon atoms. In the present density functional theory study, the effects the adhesion to either Cu(111) or α-quartz (0001) surface on the magnetic properties of graphone have been investigated. The total magnetization of the graphone adsorbed to copper and quartz surface is reduced by four and two times, respectively, with respect to the isolated graphone. We have shown there is electronic charge transfer from surface towards three-fold coordinated C atoms of graphone, but the main role in the partial magnetism quenching is played by bond formation and the consequent electron pairing of p-electrons. The critical temperature has been investigated on the basis of the mean field theory to evaluate the stability of the magnetism at ordinary temperature. © 2015 Elsevier B.V. All rights reserved.
Graphene;Magnetic-semiconductor structures;Density functional theory;Copper;Carbon nanostructures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact