We report on the self-assembling of clusters of gold-nanoparticles (Au-NPs) directed by the phase separation of poly(styrene)-b-poly(methylmethacrylate) (PS-b-PMMA) block-copolymer (BCP) on indium tin oxide coated glass, which induces the onset of vertical lamellar domains. After thermal evaporation of gold on BCP, Au-NPs of 4 nm are selectively included into PS-nanodomains by thermal annealing, and then clustered with large density of hot spots (> 104 μm2) in a random two-dimensional pattern. The resulting nanostructure exhibits near-hyperuniform long-range correlations. The consequent large degree of homogeneity of this isotropic plasmonic pattern gives rise to a highly reproducible Surface-Enhanced Raman Scattering (SERS) enhancement factor over the centimeter scale (std. dev. ∼ 10% over 0.25 cm2). We also discuss the application of a static electric field for modulating the BCP host morphology. The electric field induces an alignment of Au-NP clusters into ordered linear chains, exhibiting a stronger SERS activity, but reduced SERS spatial reproducibility. © 2015 the Owner Societies.

Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy

Morvillo, P.
2015-01-01

Abstract

We report on the self-assembling of clusters of gold-nanoparticles (Au-NPs) directed by the phase separation of poly(styrene)-b-poly(methylmethacrylate) (PS-b-PMMA) block-copolymer (BCP) on indium tin oxide coated glass, which induces the onset of vertical lamellar domains. After thermal evaporation of gold on BCP, Au-NPs of 4 nm are selectively included into PS-nanodomains by thermal annealing, and then clustered with large density of hot spots (> 104 μm2) in a random two-dimensional pattern. The resulting nanostructure exhibits near-hyperuniform long-range correlations. The consequent large degree of homogeneity of this isotropic plasmonic pattern gives rise to a highly reproducible Surface-Enhanced Raman Scattering (SERS) enhancement factor over the centimeter scale (std. dev. ∼ 10% over 0.25 cm2). We also discuss the application of a static electric field for modulating the BCP host morphology. The electric field induces an alignment of Au-NP clusters into ordered linear chains, exhibiting a stronger SERS activity, but reduced SERS spatial reproducibility. © 2015 the Owner Societies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact