Tissue engineering (TE) for tissue and organ regeneration or replacement is generally performed with scaffold implants, which provide structural and molecular support to in vitro seeded or in vivo recruited cells. TE implants elicit the host immune response, often resulting in engraftment impediment or rejection. Besides this negative effect, however, the immune system components also yield a positive influence on stem cell recruitment and differentiation, allowing tissue regeneration and healing. Thus, a balanced cooperation between proinflammatory and proresolution players of the immune response is an essential element of implant success. In this context, macrophage plasticity plays a fundamental role. Therefore modulating the immune response, instead of immune suppressing the host, might be the best way to successfully implant TE tissues or organs. In particular, it is becoming evident that the scaffold, immune, and stem cells are linked by a three-way interaction, and many efforts are being made for scaffold-appropriate design and functionalization in order to drive the inflammation process toward regeneration, vascularization, and implant success. This review discusses current and potential strategies for inflammation modulation to aid engraftment and regeneration, supporting the concept that quality, and not quantity, of inflammation might influence implant success. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Inflammation in tissue engineering: The Janus between engraftment and rejection

Teodori, L.
2015

Abstract

Tissue engineering (TE) for tissue and organ regeneration or replacement is generally performed with scaffold implants, which provide structural and molecular support to in vitro seeded or in vivo recruited cells. TE implants elicit the host immune response, often resulting in engraftment impediment or rejection. Besides this negative effect, however, the immune system components also yield a positive influence on stem cell recruitment and differentiation, allowing tissue regeneration and healing. Thus, a balanced cooperation between proinflammatory and proresolution players of the immune response is an essential element of implant success. In this context, macrophage plasticity plays a fundamental role. Therefore modulating the immune response, instead of immune suppressing the host, might be the best way to successfully implant TE tissues or organs. In particular, it is becoming evident that the scaffold, immune, and stem cells are linked by a three-way interaction, and many efforts are being made for scaffold-appropriate design and functionalization in order to drive the inflammation process toward regeneration, vascularization, and implant success. This review discusses current and potential strategies for inflammation modulation to aid engraftment and regeneration, supporting the concept that quality, and not quantity, of inflammation might influence implant success. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stem cell;Tissue engineering;Scaffold;Macrophage;Implant
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact