In this work we propose to replace the emitter layer of the n-type doped a-Si:H/p-type doped crystalline silicon heterojunction solar cell, with an n-type doped SiO x amorphous oxide layer. The n-type doped SiO x :H shows a lower activation energy and higher carrier mobility value with respect to the n-type doped a-Si:H. Moreover, higher transmission, below 500 nm of wavelength, and higher conductivity are measured. The relevance of transparency of the (n) a-SiO x :H has been studied using that film in solar cells. The electrical parameters revealed a solar cell efficiency of 15.8 %. Moreover, the effect of TCO as a front side cell electrode is considered and discussed on the base of its workfunction when applied on top of the n-type doped SiO x emitter layer using also numerical simulations. © 2013 Springer-Verlag Berlin Heidelberg.
Doped SiO x emitter layer in amorphous/crystalline silicon heterojunction solar cell
Delli Veneri, P.;Mercaldo, L.V.;Esposito, E.;Usatii, I.;Della Noce, M.;Mangiapane, P.;Serenelli, L.;Tucci, M.;Izzi, M.
2014-01-01
Abstract
In this work we propose to replace the emitter layer of the n-type doped a-Si:H/p-type doped crystalline silicon heterojunction solar cell, with an n-type doped SiO x amorphous oxide layer. The n-type doped SiO x :H shows a lower activation energy and higher carrier mobility value with respect to the n-type doped a-Si:H. Moreover, higher transmission, below 500 nm of wavelength, and higher conductivity are measured. The relevance of transparency of the (n) a-SiO x :H has been studied using that film in solar cells. The electrical parameters revealed a solar cell efficiency of 15.8 %. Moreover, the effect of TCO as a front side cell electrode is considered and discussed on the base of its workfunction when applied on top of the n-type doped SiO x emitter layer using also numerical simulations. © 2013 Springer-Verlag Berlin Heidelberg.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.