Zinc-rich/copper-poor Cu2-xZn1+xSnS4 (x = 0.2, CZTS) has been successfully produced in film and powder form using two non-aqueous solutions (of metal salts and thiourea) without the need for sulfurization during the annealing phase. A reaction route is proposed and the choices of the solvents (water, ethyleneglycol, ethanol, methanol) and of the tin source (tin chloride pentahydrate or anhydrous) discussed and justified. A pure and coarse-grained material is obtained with a mix of metal salts in methanol and thiourea in ethylene glycol. The tin pentahydrate salt seems a better alternative to the commonly used anhydrous chloride.

A water- and sulfurization-free solution route to Cu2-xZn1+xSnS4

Mittiga, A.
2014-01-01

Abstract

Zinc-rich/copper-poor Cu2-xZn1+xSnS4 (x = 0.2, CZTS) has been successfully produced in film and powder form using two non-aqueous solutions (of metal salts and thiourea) without the need for sulfurization during the annealing phase. A reaction route is proposed and the choices of the solvents (water, ethyleneglycol, ethanol, methanol) and of the tin source (tin chloride pentahydrate or anhydrous) discussed and justified. A pure and coarse-grained material is obtained with a mix of metal salts in methanol and thiourea in ethylene glycol. The tin pentahydrate salt seems a better alternative to the commonly used anhydrous chloride.
2014
CZTS;Kesterite;Sol–gel;Dip-coating method;Non-vacuum
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact