This paper presents a morphological and functional characterization of nanostructured thin films featuring high radio frequency shielding effectiveness and high optical transparency in the wavelength range 400-1500 nm. The film morphology is analyzed at the micro- and nanoscales by processing the images acquired by a scanning electron microscope. A software tool developed for this purpose analyzes the statistical distributions of the film surface grains. Fitting models and experimental evidences are presented in order to describe and predict the correlations between the film morphological and functional properties. The adopted approach and measurement methods are developed to model and optimize a particular transparent conducting oxide but can be easily extended to similar materials, deposition processes, and applications. © 1964-2012 IEEE.

Effect of grain size and distribution on the shielding effectiveness of transparent conducting thin films

Lampasi, D.A.
2014-01-01

Abstract

This paper presents a morphological and functional characterization of nanostructured thin films featuring high radio frequency shielding effectiveness and high optical transparency in the wavelength range 400-1500 nm. The film morphology is analyzed at the micro- and nanoscales by processing the images acquired by a scanning electron microscope. A software tool developed for this purpose analyzes the statistical distributions of the film surface grains. Fitting models and experimental evidences are presented in order to describe and predict the correlations between the film morphological and functional properties. The adopted approach and measurement methods are developed to model and optimize a particular transparent conducting oxide but can be easily extended to similar materials, deposition processes, and applications. © 1964-2012 IEEE.
2014
thin film;grain size distribution (GSD);Electromagnetic (EM) shielding;transparent EM shields;transparent conducting oxide (TCO)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact