Summary: Fruit ripening involves a complex interplay between ethylene and ripening-associated transcriptional regulators. Ethylene Response Factors (ERFs) are downstream components of ethylene signaling, known to regulate the expression of ethylene-responsive genes. Although fruit ripening is an ethylene-regulated process, the role of ERFs remains poorly understood. The role of Sl-ERF.B3 in tomato (Solanum lycopersicum) fruit maturation and ripening is addressed here using a chimeric dominant repressor version (ERF.B3-SRDX). Over-expression of ERF.B3-SRDX results in a dramatic delay of the onset of ripening, enhanced climacteric ethylene production and fruit softening, and reduced pigment accumulation. Consistently, genes involved in ethylene biosynthesis and in softening are up-regulated and those of carotenoid biosynthesis are down-regulated. Moreover, the expression of ripening regulators, such as RIN, NOR, CNR and HB-1, is stimulated in ERF.B3-SRDX dominant repressor fruits and the expression pattern of a number of ERFs is severely altered. The data suggest the existence of a complex network enabling interconnection between ERF genes which may account for the pleiotropic alterations in fruit maturation and ripening. Overall, the study sheds new light on the role of Sl-ERF.B3 in the transcriptional network controlling the ripening process and uncovers a means towards uncoupling some of the main ripening-associated processes. � 2014 New Phytologist Trust.

The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening

Giuliano, G.;Diretto, G.
2014

Abstract

Summary: Fruit ripening involves a complex interplay between ethylene and ripening-associated transcriptional regulators. Ethylene Response Factors (ERFs) are downstream components of ethylene signaling, known to regulate the expression of ethylene-responsive genes. Although fruit ripening is an ethylene-regulated process, the role of ERFs remains poorly understood. The role of Sl-ERF.B3 in tomato (Solanum lycopersicum) fruit maturation and ripening is addressed here using a chimeric dominant repressor version (ERF.B3-SRDX). Over-expression of ERF.B3-SRDX results in a dramatic delay of the onset of ripening, enhanced climacteric ethylene production and fruit softening, and reduced pigment accumulation. Consistently, genes involved in ethylene biosynthesis and in softening are up-regulated and those of carotenoid biosynthesis are down-regulated. Moreover, the expression of ripening regulators, such as RIN, NOR, CNR and HB-1, is stimulated in ERF.B3-SRDX dominant repressor fruits and the expression pattern of a number of ERFs is severely altered. The data suggest the existence of a complex network enabling interconnection between ERF genes which may account for the pleiotropic alterations in fruit maturation and ripening. Overall, the study sheds new light on the role of Sl-ERF.B3 in the transcriptional network controlling the ripening process and uncovers a means towards uncoupling some of the main ripening-associated processes. � 2014 New Phytologist Trust.
Solanum lycopersicum (tomato);Dominant repressor;Ethylene;Fruit ripening;Ethylene Response Factor (ERF)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/2517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact