We report the results of Raman measurements on some common military explosives and explosives precursors deposited on clothing fabrics, both synthetic and natural, in concentration comparable to those obtained from a single fingerprint or mixed with similar harmless substances to detect illegal compounds for smuggling activities. Raman spectra were obtained using an integrated portable Raman system equipped with an optical microscope and a 785-nm laser in an analysis of <1 min. The spectral features of each illicit substance have been identified and distinguished from those belonging to the substrate fabric or from the interfering compound. Our results show that the application of Raman spectroscopy (RS) with a microscope-based portable apparatus can provide interpretable Raman spectra for a fast, in-situ analysis, directly from explosive particles of some ?m3, despite the contribution of the substrate, leaving the sample completely unaltered for further, more specific, and propedeutic laboratory analysis. We also show how the RS is suitable for detecting illegal compounds mixed with harmless substances for smuggling purposes or for counterfeiting activities. � 2014 Society of Photo-Optical Instrumentation Engineers.

Application of micro-Raman spectroscopy for fight against terrorism and smuggling

Puiu, A.;Palucci, A.;Botti, S.;Almaviva, S.
2014

Abstract

We report the results of Raman measurements on some common military explosives and explosives precursors deposited on clothing fabrics, both synthetic and natural, in concentration comparable to those obtained from a single fingerprint or mixed with similar harmless substances to detect illegal compounds for smuggling activities. Raman spectra were obtained using an integrated portable Raman system equipped with an optical microscope and a 785-nm laser in an analysis of <1 min. The spectral features of each illicit substance have been identified and distinguished from those belonging to the substrate fabric or from the interfering compound. Our results show that the application of Raman spectroscopy (RS) with a microscope-based portable apparatus can provide interpretable Raman spectra for a fast, in-situ analysis, directly from explosive particles of some ?m3, despite the contribution of the substrate, leaving the sample completely unaltered for further, more specific, and propedeutic laboratory analysis. We also show how the RS is suitable for detecting illegal compounds mixed with harmless substances for smuggling purposes or for counterfeiting activities. � 2014 Society of Photo-Optical Instrumentation Engineers.
explosives detection;ammonium nitrate;counterterrorism;trace detection;infrared Raman microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12079/2542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact