Long-term climate change and decadal variability in the Mediterranean region during 1860–2100 are investigated based on observational data and the newly available Coupled Model Intercomparison Project—Phase 5 (CMIP5) experiments. Observational records show that decadal variability and a general tendency for annual-mean conditions to be warmer and drier have characterized the Mediterranean during 1860–2005. Consistency with CMIP5 model simulations including greenhouse gases (GHG), as well as anthropogenic aerosols and natural forcings, suggest that forced changes have characterized aspects of Mediterranean climate during this period. Future GHG-forced change will take place in the midst of decadal variability, both internal and forced, as it has occurred in the past. However, future rates of forced warming and drying over the Mediterranean are projected to be higher than in the past century. The degree to which forced change and internal variability will matter depends on the climatic quantity being considered. For surface air temperature and Mediterranean Sea annual-mean evaporation and surface freshwater fluxes, variability and forced change have become comparable and the forced signal has already emerged from internal variability. For quantities with large internal variability and relatively small forced signal such as precipitation, forced change will emerge later on in the twenty-first century over selected regions and seasons. Regardless, the probability distribution of future precipitation anomalies is progressively shifting towards drier conditions. Overall, results highlight that both mean projected forced change and the variability that will accompany forced mean change should be considered in the development of future climate outlooks. © 2015, Springer-Verlag (outside the USA).
Long-term climate change in the Mediterranean region in the midst of decadal variability
Alessandri, A.
2015-01-01
Abstract
Long-term climate change and decadal variability in the Mediterranean region during 1860–2100 are investigated based on observational data and the newly available Coupled Model Intercomparison Project—Phase 5 (CMIP5) experiments. Observational records show that decadal variability and a general tendency for annual-mean conditions to be warmer and drier have characterized the Mediterranean during 1860–2005. Consistency with CMIP5 model simulations including greenhouse gases (GHG), as well as anthropogenic aerosols and natural forcings, suggest that forced changes have characterized aspects of Mediterranean climate during this period. Future GHG-forced change will take place in the midst of decadal variability, both internal and forced, as it has occurred in the past. However, future rates of forced warming and drying over the Mediterranean are projected to be higher than in the past century. The degree to which forced change and internal variability will matter depends on the climatic quantity being considered. For surface air temperature and Mediterranean Sea annual-mean evaporation and surface freshwater fluxes, variability and forced change have become comparable and the forced signal has already emerged from internal variability. For quantities with large internal variability and relatively small forced signal such as precipitation, forced change will emerge later on in the twenty-first century over selected regions and seasons. Regardless, the probability distribution of future precipitation anomalies is progressively shifting towards drier conditions. Overall, results highlight that both mean projected forced change and the variability that will accompany forced mean change should be considered in the development of future climate outlooks. © 2015, Springer-Verlag (outside the USA).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.